ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1907.02056
  4. Cited By
Variance Reduction for Matrix Games

Variance Reduction for Matrix Games

3 July 2019
Y. Carmon
Yujia Jin
Aaron Sidford
Kevin Tian
ArXivPDFHTML

Papers citing "Variance Reduction for Matrix Games"

13 / 13 papers shown
Title
ReSQueing Parallel and Private Stochastic Convex Optimization
ReSQueing Parallel and Private Stochastic Convex Optimization
Y. Carmon
A. Jambulapati
Yujia Jin
Y. Lee
Daogao Liu
Aaron Sidford
Kevin Tian
FedML
30
12
0
01 Jan 2023
Smooth Monotone Stochastic Variational Inequalities and Saddle Point
  Problems: A Survey
Smooth Monotone Stochastic Variational Inequalities and Saddle Point Problems: A Survey
Aleksandr Beznosikov
Boris Polyak
Eduard A. Gorbunov
D. Kovalev
Alexander Gasnikov
44
31
0
29 Aug 2022
Stochastic Gradient Descent-Ascent: Unified Theory and New Efficient
  Methods
Stochastic Gradient Descent-Ascent: Unified Theory and New Efficient Methods
Aleksandr Beznosikov
Eduard A. Gorbunov
Hugo Berard
Nicolas Loizou
24
49
0
15 Feb 2022
Optimal Algorithms for Decentralized Stochastic Variational Inequalities
Optimal Algorithms for Decentralized Stochastic Variational Inequalities
D. Kovalev
Aleksandr Beznosikov
Abdurakhmon Sadiev
Michael Persiianov
Peter Richtárik
Alexander Gasnikov
37
35
0
06 Feb 2022
On the Complexity of a Practical Primal-Dual Coordinate Method
On the Complexity of a Practical Primal-Dual Coordinate Method
Ahmet Alacaoglu
V. Cevher
Stephen J. Wright
23
12
0
19 Jan 2022
Efficient Performance Bounds for Primal-Dual Reinforcement Learning from
  Demonstrations
Efficient Performance Bounds for Primal-Dual Reinforcement Learning from Demonstrations
Angeliki Kamoutsi
G. Banjac
John Lygeros
OffRL
31
7
0
28 Dec 2021
Extragradient Method: $O(1/K)$ Last-Iterate Convergence for Monotone
  Variational Inequalities and Connections With Cocoercivity
Extragradient Method: O(1/K)O(1/K)O(1/K) Last-Iterate Convergence for Monotone Variational Inequalities and Connections With Cocoercivity
Eduard A. Gorbunov
Nicolas Loizou
Gauthier Gidel
36
64
0
08 Oct 2021
The Complexity of Nonconvex-Strongly-Concave Minimax Optimization
The Complexity of Nonconvex-Strongly-Concave Minimax Optimization
Siqi Zhang
Junchi Yang
Cristóbal Guzmán
Negar Kiyavash
Niao He
33
61
0
29 Mar 2021
Cyclic Coordinate Dual Averaging with Extrapolation
Cyclic Coordinate Dual Averaging with Extrapolation
Chaobing Song
Jelena Diakonikolas
32
6
0
26 Feb 2021
Stochastic Hamiltonian Gradient Methods for Smooth Games
Stochastic Hamiltonian Gradient Methods for Smooth Games
Nicolas Loizou
Hugo Berard
Alexia Jolicoeur-Martineau
Pascal Vincent
Simon Lacoste-Julien
Ioannis Mitliagkas
39
50
0
08 Jul 2020
Cocoercivity, Smoothness and Bias in Variance-Reduced Stochastic
  Gradient Methods
Cocoercivity, Smoothness and Bias in Variance-Reduced Stochastic Gradient Methods
Martin Morin
Pontus Giselsson
20
2
0
21 Mar 2019
Frank-Wolfe Algorithms for Saddle Point Problems
Frank-Wolfe Algorithms for Saddle Point Problems
Gauthier Gidel
Tony Jebara
Simon Lacoste-Julien
42
70
0
25 Oct 2016
A Proximal Stochastic Gradient Method with Progressive Variance
  Reduction
A Proximal Stochastic Gradient Method with Progressive Variance Reduction
Lin Xiao
Tong Zhang
ODL
93
737
0
19 Mar 2014
1