Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1907.02435
Cited By
v1
v2 (latest)
Graphical Criteria for Efficient Total Effect Estimation via Adjustment in Causal Linear Models
4 July 2019
Leonard Henckel
Emilija Perković
Marloes H. Maathuis
CML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Graphical Criteria for Efficient Total Effect Estimation via Adjustment in Causal Linear Models"
47 / 47 papers shown
Title
Linear-Time Primitives for Algorithm Development in Graphical Causal Inference
Marcel Wienöbst
Sebastian Weichwald
Leonard Henckel
12
0
0
18 Jun 2025
Causal Effect Identification in lvLiNGAM from Higher-Order Cumulants
D. Tramontano
Yaroslav Kivva
Saber Salehkaleybar
Mathias Drton
Negar Kiyavash
CML
105
0
0
05 Jun 2025
Your Assumed DAG is Wrong and Here's How To Deal With It
Kirtan Padh
Zhufeng Li
Cecilia Casolo
Niki Kilbertus
CML
104
0
0
24 Feb 2025
SNAP: Sequential Non-Ancestor Pruning for Targeted Causal Effect Estimation With an Unknown Graph
Mátyás Schubert
Tom Claassen
Sara Magliacane
CML
112
0
0
11 Feb 2025
Practically Effective Adjustment Variable Selection in Causal Inference
Atsushi Noda
Takashi Isozaki
117
0
0
04 Feb 2025
Local Learning for Covariate Selection in Nonparametric Causal Effect Estimation with Latent Variables
Zheng Li
Feng Xie
Xichen Guo
Yan Zeng
Hao Zhang
Zhi Geng
CML
212
0
0
25 Nov 2024
Identifying Total Causal Effects in Linear Models under Partial Homoscedasticity
David Strieder
Mathias Drton
CML
54
0
0
12 Aug 2024
A matrix algebra for graphical statistical models
Qingyuan Zhao
68
1
0
22 Jul 2024
Fast Proxy Experiment Design for Causal Effect Identification
Sepehr Elahi
S. Akbari
Jalal Etesami
Negar Kiyavash
Patrick Thiran
55
0
0
07 Jul 2024
Neural Networks with Causal Graph Constraints: A New Approach for Treatment Effects Estimation
Roger Pros
Jordi Vitrià
CML
90
0
0
18 Apr 2024
Faithlessness in Gaussian graphical models
Mathias Drton
Leonard Henckel
Benjamin Hollering
Pratik Misra
73
1
0
08 Apr 2024
Disparate Effect Of Missing Mediators On Transportability of Causal Effects
Vishwali Mhasawade
R. Chunara
40
0
0
13 Mar 2024
Efficient adjustment for complex covariates: Gaining efficiency with DOPE
Alexander Mangulad Christgau
Niels Richard Hansen
93
3
0
20 Feb 2024
Adjustment Identification Distance: A gadjid for Causal Structure Learning
Leonard Henckel
Theo Würtzen
Sebastian Weichwald
CML
100
11
0
13 Feb 2024
Bayesian Causal Inference with Gaussian Process Networks
Enrico Giudice
Jack Kuipers
G. Moffa
73
1
0
01 Feb 2024
Confounder selection via iterative graph expansion
F. R. Guo
Qingyuan Zhao
CML
40
6
0
12 Sep 2023
Joint structure learning and causal effect estimation for categorical graphical models
F. Castelletti
G. Consonni
Marco L. Della Vedova
CML
50
2
0
28 Jun 2023
Causal Effect Estimation from Observational and Interventional Data Through Matrix Weighted Linear Estimators
Klaus-Rudolf Kladny
Julius von Kügelgen
Bernhard Schölkopf
Michael Muehlebach
CML
28
0
0
09 Jun 2023
Do we become wiser with time? On causal equivalence with tiered background knowledge
Christine W. Bang
Vanessa Didelez
61
3
0
02 Jun 2023
Toward Falsifying Causal Graphs Using a Permutation-Based Test
Elias Eulig
Atalanti A. Mastakouri
Patrick Blobaum
Michael W. Hardt
Dominik Janzing
35
13
0
16 May 2023
Local Causal Discovery for Estimating Causal Effects
Shantanu Gupta
David Benjamin Childers
Zachary Chase Lipton
CML
70
12
0
16 Feb 2023
Data-Driven Estimation of Heterogeneous Treatment Effects
Christopher Tran
Keith Burghardt
Kristina Lerman
Elena Zheleva
CML
56
1
0
16 Jan 2023
Confounder Selection: Objectives and Approaches
F. R. Guo
A. Lundborg
Qingyuan Zhao
CML
59
6
0
29 Aug 2022
Data-Driven Causal Effect Estimation Based on Graphical Causal Modelling: A Survey
Debo Cheng
Jiuyong Li
Lin Liu
Jixue Liu
T. Le
CML
94
32
0
20 Aug 2022
Valid Inference after Causal Discovery
Paula Gradu
Tijana Zrnic
Yixin Wang
Michael I. Jordan
CML
81
8
0
11 Aug 2022
Graphical tools for selecting conditional instrumental sets
Leonard Henckel
Martin Buttenschon
Marloes H. Maathuis
CML
84
9
0
07 Aug 2022
On the Representation of Causal Background Knowledge and its Applications in Causal Inference
Zhuangyan Fang
Ruiqi Zhao
Yue Liu
Yangbo He
72
4
0
10 Jul 2022
Improving Data-driven Heterogeneous Treatment Effect Estimation Under Structure Uncertainty
Christopher Tran
Elena Zheleva
CML
70
4
0
25 Jun 2022
Variable elimination, graph reduction and efficient g-formula
F. R. Guo
Emilija Perković
A. Rotnitzky
CML
74
7
0
24 Feb 2022
A Free Lunch with Influence Functions? Improving Neural Network Estimates with Concepts from Semiparametric Statistics
M. Vowels
S. Akbari
Necati Cihan Camgöz
Richard Bowden
60
4
0
18 Feb 2022
Sequentially learning the topological ordering of causal directed acyclic graphs with likelihood ratio scores
Gabriel Ruiz
Oscar Hernan Madrid Padilla
Qing Zhou
CML
68
2
0
03 Feb 2022
A note on efficient minimum cost adjustment sets in causal graphical models
Ezequiel Smucler
A. Rotnitzky
CML
60
8
0
06 Jan 2022
Leveraging Causal Graphs for Blocking in Randomized Experiments
A. Umrawal
CML
51
0
0
03 Nov 2021
Efficient Online Estimation of Causal Effects by Deciding What to Observe
Shantanu Gupta
Zachary Chase Lipton
David Benjamin Childers
CML
83
19
0
20 Aug 2021
Causal Markov Boundaries
Sofia Triantafillou
Fattaneh Jabbari
Gregory F. Cooper
CML
OOD
55
5
0
12 Mar 2021
Incorporating Causal Graphical Prior Knowledge into Predictive Modeling via Simple Data Augmentation
Takeshi Teshima
Masashi Sugiyama
CML
86
13
0
27 Feb 2021
Necessary and sufficient graphical conditions for optimal adjustment sets in causal graphical models with hidden variables
Jakob Runge
CML
94
27
0
20 Feb 2021
Minimal enumeration of all possible total effects in a Markov equivalence class
F. R. Guo
Emilija Perković
CML
38
17
0
16 Oct 2020
Efficient least squares for estimating total effects under linearity and causal sufficiency
By F. Richard Guo
Emilija Perković
CML
109
13
0
08 Aug 2020
Learning Adjustment Sets from Observational and Limited Experimental Data
Sofia Triantafillou
Gregory F. Cooper
CML
43
7
0
18 May 2020
Efficient adjustment sets in causal graphical models with hidden variables
Ezequiel Smucler
F. Sapienza
A. Rotnitzky
CML
OffRL
95
33
0
22 Apr 2020
The Variance of Causal Effect Estimators for Binary V-structures
Jack Kuipers
G. Moffa
CML
42
6
0
20 Apr 2020
Semiparametric Inference For Causal Effects In Graphical Models With Hidden Variables
Rohit Bhattacharya
Razieh Nabi
I. Shpitser
CML
96
64
0
27 Mar 2020
Estimating Treatment Effects with Observed Confounders and Mediators
Shantanu Gupta
Zachary Chase Lipton
David Benjamin Childers
CML
68
17
0
26 Mar 2020
On efficient adjustment in causal graphs
Jan-Jelle Witte
Leonard Henckel
Marloes H. Maathuis
Vanessa Didelez
CML
80
70
0
17 Feb 2020
Efficient adjustment sets for population average treatment effect estimation in non-parametric causal graphical models
A. Rotnitzky
Ezequiel Smucler
CML
96
31
0
01 Dec 2019
Identifying causal effects in maximally oriented partially directed acyclic graphs
Emilija Perković
CML
59
39
0
07 Oct 2019
1