ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1907.03343
  4. Cited By
Fast and Provable ADMM for Learning with Generative Priors

Fast and Provable ADMM for Learning with Generative Priors

7 July 2019
Fabian Latorre Gómez
Armin Eftekhari
V. Cevher
    GAN
ArXivPDFHTML

Papers citing "Fast and Provable ADMM for Learning with Generative Priors"

29 / 29 papers shown
Title
Robustness and Exploration of Variational and Machine Learning
  Approaches to Inverse Problems: An Overview
Robustness and Exploration of Variational and Machine Learning Approaches to Inverse Problems: An Overview
Alexander Auras
Kanchana Vaishnavi Gandikota
Hannah Droege
Michael Moeller
AAML
29
0
0
19 Feb 2024
VDIP-TGV: Blind Image Deconvolution via Variational Deep Image Prior
  Empowered by Total Generalized Variation
VDIP-TGV: Blind Image Deconvolution via Variational Deep Image Prior Empowered by Total Generalized Variation
Tingting Wu
Zhiyan Du
Zhi Li
Feng-Lei Fan
Tieyong Zeng
20
2
0
30 Oct 2023
On the Fine-Grained Hardness of Inverting Generative Models
On the Fine-Grained Hardness of Inverting Generative Models
Feyza Duman Keles
Chinmay Hegde
17
1
0
11 Sep 2023
Distributed and Scalable Optimization for Robust Proton Treatment
  Planning
Distributed and Scalable Optimization for Robust Proton Treatment Planning
A. Fu
V. Taasti
M. Zarepisheh
11
2
0
27 Apr 2023
Inverse problem regularization with hierarchical variational
  autoencoders
Inverse problem regularization with hierarchical variational autoencoders
Jean Prost
Antoine Houdard
Andrés Almansa
Nicolas Papadakis
16
4
0
20 Mar 2023
Convergent Data-driven Regularizations for CT Reconstruction
Convergent Data-driven Regularizations for CT Reconstruction
Samira Kabri
Alexander Auras
D. Riccio
Hartmut Bauermeister
Martin Benning
Michael Moeller
Martin Burger
22
12
0
14 Dec 2022
Theoretical Perspectives on Deep Learning Methods in Inverse Problems
Theoretical Perspectives on Deep Learning Methods in Inverse Problems
Jonathan Scarlett
Reinhard Heckel
M. Rodrigues
Paul Hand
Yonina C. Eldar
AI4CE
27
28
0
29 Jun 2022
TurbuGAN: An Adversarial Learning Approach to Spatially-Varying
  Multiframe Blind Deconvolution with Applications to Imaging Through
  Turbulence
TurbuGAN: An Adversarial Learning Approach to Spatially-Varying Multiframe Blind Deconvolution with Applications to Imaging Through Turbulence
Brandon Yushan Feng
Mingyang Xie
Christopher A. Metzler
ViT
20
14
0
13 Mar 2022
Subquadratic Overparameterization for Shallow Neural Networks
Subquadratic Overparameterization for Shallow Neural Networks
Chaehwan Song
Ali Ramezani-Kebrya
Thomas Pethick
Armin Eftekhari
V. Cevher
22
32
0
02 Nov 2021
Inverse Problems Leveraging Pre-trained Contrastive Representations
Inverse Problems Leveraging Pre-trained Contrastive Representations
Sriram Ravula
Georgios Smyrnis
Matt Jordan
A. Dimakis
SSL
27
9
0
14 Oct 2021
Robust Compressed Sensing MRI with Deep Generative Priors
Robust Compressed Sensing MRI with Deep Generative Priors
A. Jalal
Marius Arvinte
Giannis Daras
Eric Price
A. Dimakis
Jonathan I. Tamir
MedIm
39
321
0
03 Aug 2021
Instance-Optimal Compressed Sensing via Posterior Sampling
Instance-Optimal Compressed Sensing via Posterior Sampling
A. Jalal
Sushrut Karmalkar
A. Dimakis
Eric Price
26
51
0
21 Jun 2021
Recovery Analysis for Plug-and-Play Priors using the Restricted
  Eigenvalue Condition
Recovery Analysis for Plug-and-Play Priors using the Restricted Eigenvalue Condition
Jiaming Liu
M. Salman Asif
B. Wohlberg
Ulugbek S. Kamilov
26
39
0
07 Jun 2021
Solving Inverse Problems by Joint Posterior Maximization with
  Autoencoding Prior
Solving Inverse Problems by Joint Posterior Maximization with Autoencoding Prior
Mario González
Andrés Almansa
Pauline Tan
37
30
0
02 Mar 2021
Provable Compressed Sensing with Generative Priors via Langevin Dynamics
Provable Compressed Sensing with Generative Priors via Langevin Dynamics
Thanh V. Nguyen
Gauri Jagatap
C. Hegde
GAN
17
12
0
25 Feb 2021
Prior Image-Constrained Reconstruction using Style-Based Generative
  Models
Prior Image-Constrained Reconstruction using Style-Based Generative Models
Varun A. Kelkar
M. Anastasio
11
28
0
24 Feb 2021
The Nonconvex Geometry of Linear Inverse Problems
The Nonconvex Geometry of Linear Inverse Problems
Armin Eftekhari
Peyman Mohajerin Esfahani
13
1
0
07 Jan 2021
Solving Inverse Problems with Hybrid Deep Image Priors: the challenge of
  preventing overfitting
Solving Inverse Problems with Hybrid Deep Image Priors: the challenge of preventing overfitting
Zhaodong Sun
Thomas Sanchez
Fabian Latorre
V. Cevher
SupR
12
26
0
03 Nov 2020
Scalable Adversarial Attack on Graph Neural Networks with Alternating
  Direction Method of Multipliers
Scalable Adversarial Attack on Graph Neural Networks with Alternating Direction Method of Multipliers
Boyuan Feng
Yuke Wang
Xu Li
Yufei Ding
GNN
AAML
11
2
0
22 Sep 2020
Compressive Phase Retrieval: Optimal Sample Complexity with Deep
  Generative Priors
Compressive Phase Retrieval: Optimal Sample Complexity with Deep Generative Priors
Paul Hand
Oscar Leong
V. Voroninski
17
6
0
24 Aug 2020
Compressed Sensing via Measurement-Conditional Generative Models
Compressed Sensing via Measurement-Conditional Generative Models
Kyungsu Kim
J. H. Lee
Eunho Yang
GAN
MedIm
22
3
0
02 Jul 2020
When and How Can Deep Generative Models be Inverted?
When and How Can Deep Generative Models be Inverted?
Aviad Aberdam
Dror Simon
Michael Elad
14
13
0
28 Jun 2020
Robust Compressed Sensing using Generative Models
Robust Compressed Sensing using Generative Models
A. Jalal
Liu Liu
A. Dimakis
C. Caramanis
21
39
0
16 Jun 2020
Scalable Plug-and-Play ADMM with Convergence Guarantees
Scalable Plug-and-Play ADMM with Convergence Guarantees
Yu Sun
Zihui Wu
Xiaojian Xu
B. Wohlberg
Ulugbek S. Kamilov
BDL
19
74
0
05 Jun 2020
A Generative Model for Generic Light Field Reconstruction
A Generative Model for Generic Light Field Reconstruction
Paramanand Chandramouli
Kanchana Vaishnavi Gandikota
Andreas Görlitz
A. Kolb
Michael Moeller
35
5
0
13 May 2020
Deep Learning Techniques for Inverse Problems in Imaging
Deep Learning Techniques for Inverse Problems in Imaging
Greg Ongie
A. Jalal
Christopher A. Metzler
Richard G. Baraniuk
A. Dimakis
Rebecca Willett
11
518
0
12 May 2020
Deep S$^3$PR: Simultaneous Source Separation and Phase Retrieval Using
  Deep Generative Models
Deep S3^33PR: Simultaneous Source Separation and Phase Retrieval Using Deep Generative Models
Christopher A. Metzler
Gordon Wetzstein
13
11
0
14 Feb 2020
Sample Complexity Bounds for 1-bit Compressive Sensing and Binary Stable
  Embeddings with Generative Priors
Sample Complexity Bounds for 1-bit Compressive Sensing and Binary Stable Embeddings with Generative Priors
Zhaoqiang Liu
S. Gomes
Avtansh Tiwari
Jonathan Scarlett
29
27
0
05 Feb 2020
Nearly Minimal Over-Parametrization of Shallow Neural Networks
Armin Eftekhari
Chaehwan Song
V. Cevher
10
1
0
09 Oct 2019
1