Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
1907.03792
Cited By
v1
v2 (latest)
Asymptotic Bayes risk for Gaussian mixture in a semi-supervised setting
IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), 2019
8 July 2019
Marc Lelarge
Léo Miolane
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Asymptotic Bayes risk for Gaussian mixture in a semi-supervised setting"
22 / 22 papers shown
Title
When and How Unlabeled Data Provably Improve In-Context Learning
Yingcong Li
Xiangyu Chang
Muti Kara
Xiaofeng Liu
Amit K. Roy-Chowdhury
Samet Oymak
128
1
0
18 Jun 2025
The Effect of Optimal Self-Distillation in Noisy Gaussian Mixture Model
Kaito Takanami
Takashi Takahashi
Ayaka Sakata
278
2
0
27 Jan 2025
Optimal Exact Recovery in Semi-Supervised Learning: A Study of Spectral Methods and Graph Convolutional Networks
International Conference on Machine Learning (ICML), 2024
Hai-Xiao Wang
Zhichao Wang
206
1
0
18 Dec 2024
Analysis of High-dimensional Gaussian Labeled-unlabeled Mixture Model via Message-passing Algorithm
Journal of Statistical Mechanics: Theory and Experiment (JSTAT), 2024
Xiaosi Gu
Tomoyuki Obuchi
254
0
0
29 Nov 2024
Bias in Motion: Theoretical Insights into the Dynamics of Bias in SGD Training
Anchit Jain
Rozhin Nobahari
A. Baratin
Stefano Sarao Mannelli
168
5
0
28 May 2024
Asymptotic Bayes risk of semi-supervised learning with uncertain labeling
Victor Leger
Romain Couillet
110
0
0
26 Mar 2024
Universal Lower Bounds and Optimal Rates: Achieving Minimax Clustering Error in Sub-Exponential Mixture Models
Maximilien Dreveton
Alperen Gozeten
Matthias Grossglauser
Patrick Thiran
212
4
0
23 Feb 2024
Random Matrix Analysis to Balance between Supervised and Unsupervised Learning under the Low Density Separation Assumption
Vasilii Feofanov
Malik Tiomoko
Aladin Virmaux
124
8
0
20 Oct 2023
Classification of Heavy-tailed Features in High Dimensions: a Superstatistical Approach
Neural Information Processing Systems (NeurIPS), 2023
Urte Adomaityte
G. Sicuro
P. Vivo
135
11
0
06 Apr 2023
Asymptotic Bayes risk of semi-supervised multitask learning on Gaussian mixture
International Conference on Artificial Intelligence and Statistics (AISTATS), 2023
Minh-Toan Nguyen
Romain Couillet
104
4
0
03 Mar 2023
The Quantum Path Kernel: a Generalized Quantum Neural Tangent Kernel for Deep Quantum Machine Learning
IEEE Transactions on Quantum Engineering (IEEE Trans. Quantum Eng.), 2022
Massimiliano Incudini
Michele Grossi
Antonio Mandarino
S. Vallecorsa
Alessandra Di Pierro
David Windridge
162
13
0
22 Dec 2022
Gaussian Universality of Perceptrons with Random Labels
Physical Review E (Phys. Rev. E), 2022
Federica Gerace
Florent Krzakala
Bruno Loureiro
Ludovic Stephan
Lenka Zdeborová
197
26
0
26 May 2022
Bayesian Inference with Nonlinear Generative Models: Comments on Secure Learning
IEEE Transactions on Information Theory (IEEE Trans. Inf. Theory), 2022
Ali Bereyhi
Bruno Loureiro
Florent Krzakala
R. Muller
H. Schulz-Baldes
156
2
0
19 Jan 2022
PCA-based Multi Task Learning: a Random Matrix Approach
International Conference on Machine Learning (ICML), 2021
Malik Tiomoko
Romain Couillet
Frédéric Pascal
116
6
0
01 Nov 2021
Classifying high-dimensional Gaussian mixtures: Where kernel methods fail and neural networks succeed
International Conference on Machine Learning (ICML), 2021
Maria Refinetti
Sebastian Goldt
Florent Krzakala
Lenka Zdeborová
159
77
0
23 Feb 2021
Theoretical Insights Into Multiclass Classification: A High-dimensional Asymptotic View
Neural Information Processing Systems (NeurIPS), 2020
Christos Thrampoulidis
Samet Oymak
Mahdi Soltanolkotabi
124
45
0
16 Nov 2020
Overcoming the curse of dimensionality with Laplacian regularization in semi-supervised learning
Neural Information Processing Systems (NeurIPS), 2020
Vivien A. Cabannes
Loucas Pillaud-Vivien
Francis R. Bach
Alessandro Rudi
207
20
0
09 Sep 2020
Large Dimensional Analysis and Improvement of Multi Task Learning
Malik Tiomoko Ali
Romain Couillet
Hafiz Tiomoko
73
8
0
03 Sep 2020
Statistical and Algorithmic Insights for Semi-supervised Learning with Self-training
Samet Oymak
Talha Cihad Gulcu
129
20
0
19 Jun 2020
Entropic gradient descent algorithms and wide flat minima
International Conference on Learning Representations (ICLR), 2020
Fabrizio Pittorino
Carlo Lucibello
Christoph Feinauer
Gabriele Perugini
Carlo Baldassi
Elizaveta Demyanenko
R. Zecchina
ODL
MLT
257
35
0
14 Jun 2020
Consistent Semi-Supervised Graph Regularization for High Dimensional Data
Journal of machine learning research (JMLR), 2020
Xiaoyi Mai
Romain Couillet
51
16
0
13 Jun 2020
The role of regularization in classification of high-dimensional noisy Gaussian mixture
International Conference on Machine Learning (ICML), 2020
Francesca Mignacco
Florent Krzakala
Yue M. Lu
Lenka Zdeborová
110
95
0
26 Feb 2020
1