ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1907.04135
  4. Cited By
The What-If Tool: Interactive Probing of Machine Learning Models

The What-If Tool: Interactive Probing of Machine Learning Models

9 July 2019
James Wexler
Mahima Pushkarna
Tolga Bolukbasi
Martin Wattenberg
F. Viégas
Jimbo Wilson
    VLM
ArXivPDFHTML

Papers citing "The What-If Tool: Interactive Probing of Machine Learning Models"

30 / 230 papers shown
Title
"What We Can't Measure, We Can't Understand": Challenges to Demographic
  Data Procurement in the Pursuit of Fairness
"What We Can't Measure, We Can't Understand": Challenges to Demographic Data Procurement in the Pursuit of Fairness
Mckane Andrus
Elena Spitzer
Jeffrey Brown
Alice Xiang
13
126
0
30 Oct 2020
A Comparative Analysis of Industry Human-AI Interaction Guidelines
A Comparative Analysis of Industry Human-AI Interaction Guidelines
Austin P. Wright
Zijie J. Wang
Haekyu Park
G. Guo
F. Sperrle
Mennatallah El-Assady
Alex Endert
Daniel A. Keim
Duen Horng Chau
14
30
0
22 Oct 2020
Value Cards: An Educational Toolkit for Teaching Social Impacts of
  Machine Learning through Deliberation
Value Cards: An Educational Toolkit for Teaching Social Impacts of Machine Learning through Deliberation
Hong Shen
Wesley Hanwen Deng
Aditi Chattopadhyay
Zhiwei Steven Wu
Xu Wang
Haiyi Zhu
19
63
0
22 Oct 2020
Counterfactual Explanations and Algorithmic Recourses for Machine
  Learning: A Review
Counterfactual Explanations and Algorithmic Recourses for Machine Learning: A Review
Sahil Verma
Varich Boonsanong
Minh Hoang
Keegan E. Hines
John P. Dickerson
Chirag Shah
CML
24
162
0
20 Oct 2020
Interpretable Machine Learning -- A Brief History, State-of-the-Art and
  Challenges
Interpretable Machine Learning -- A Brief History, State-of-the-Art and Challenges
Christoph Molnar
Giuseppe Casalicchio
B. Bischl
AI4TS
AI4CE
10
397
0
19 Oct 2020
A survey of algorithmic recourse: definitions, formulations, solutions,
  and prospects
A survey of algorithmic recourse: definitions, formulations, solutions, and prospects
Amir-Hossein Karimi
Gilles Barthe
Bernhard Schölkopf
Isabel Valera
FaML
6
172
0
08 Oct 2020
Measure Utility, Gain Trust: Practical Advice for XAI Researcher
Measure Utility, Gain Trust: Practical Advice for XAI Researcher
B. Pierson
M. Glenski
William I. N. Sealy
Dustin L. Arendt
8
28
0
27 Sep 2020
Auditing the Sensitivity of Graph-based Ranking with Visual Analytics
Auditing the Sensitivity of Graph-based Ranking with Visual Analytics
Tiankai Xie
Yuxin Ma
Hanghang Tong
My T. Thai
Ross Maciejewski
MLAU
25
7
0
15 Sep 2020
A Visual Analytics Framework for Explaining and Diagnosing Transfer
  Learning Processes
A Visual Analytics Framework for Explaining and Diagnosing Transfer Learning Processes
Yuxin Ma
Arlen Fan
Jingrui He
A. R. Nelakurthi
Ross Maciejewski
4
25
0
15 Sep 2020
A Visual Analytics Approach for Exploratory Causal Analysis:
  Exploration, Validation, and Applications
A Visual Analytics Approach for Exploratory Causal Analysis: Exploration, Validation, and Applications
Xiao Xie
F. Du
Yingcai Wu
CML
6
35
0
05 Sep 2020
A Visual Analytics Approach to Debugging Cooperative, Autonomous
  Multi-Robot Systems' Worldviews
A Visual Analytics Approach to Debugging Cooperative, Autonomous Multi-Robot Systems' Worldviews
S. Bae
Federico Rossi
J. V. Hook
Scott Davidoff
K. Ma
12
7
0
03 Sep 2020
A Survey of Visual Analytics Techniques for Machine Learning
A Survey of Visual Analytics Techniques for Machine Learning
Jun Yuan
Changjian Chen
Weikai Yang
Mengchen Liu
Jiazhi Xia
Shixia Liu
19
216
0
21 Aug 2020
DECE: Decision Explorer with Counterfactual Explanations for Machine
  Learning Models
DECE: Decision Explorer with Counterfactual Explanations for Machine Learning Models
Furui Cheng
Yao Ming
Huamin Qu
CML
HAI
6
99
0
19 Aug 2020
The Language Interpretability Tool: Extensible, Interactive
  Visualizations and Analysis for NLP Models
The Language Interpretability Tool: Extensible, Interactive Visualizations and Analysis for NLP Models
Ian Tenney
James Wexler
Jasmijn Bastings
Tolga Bolukbasi
Andy Coenen
...
Ellen Jiang
Mahima Pushkarna
Carey Radebaugh
Emily Reif
Ann Yuan
VLM
36
191
0
12 Aug 2020
Revisiting the Modifiable Areal Unit Problem in Deep Traffic Prediction
  with Visual Analytics
Revisiting the Modifiable Areal Unit Problem in Deep Traffic Prediction with Visual Analytics
Wei Zeng
Chengqiao Lin
Juncong Lin
Jincheng Jiang
Jiazhi Xia
Cagatay Turkay
Wei-Neng Chen
11
27
0
30 Jul 2020
Diagnosing Concept Drift with Visual Analytics
Diagnosing Concept Drift with Visual Analytics
Weikai Yang
Zhuguo Li
Mengchen Liu
Yafeng Lu
Kelei Cao
Ross Maciejewski
Shixia Liu
45
33
0
28 Jul 2020
Melody: Generating and Visualizing Machine Learning Model Summary to
  Understand Data and Classifiers Together
Melody: Generating and Visualizing Machine Learning Model Summary to Understand Data and Classifiers Together
G. Chan
E. Bertini
L. G. Nonato
Brian Barr
Claudio T. Silva
20
17
0
21 Jul 2020
The Grammar of Interactive Explanatory Model Analysis
The Grammar of Interactive Explanatory Model Analysis
Hubert Baniecki
Dariusz Parzych
P. Biecek
16
44
0
01 May 2020
The Impact of Presentation Style on Human-In-The-Loop Detection of
  Algorithmic Bias
The Impact of Presentation Style on Human-In-The-Loop Detection of Algorithmic Bias
Po-Ming Law
Sana Malik
F. Du
Moumita Sinha
18
6
0
26 Apr 2020
Multi-Objective Counterfactual Explanations
Multi-Objective Counterfactual Explanations
Susanne Dandl
Christoph Molnar
Martin Binder
B. Bischl
11
250
0
23 Apr 2020
Boxer: Interactive Comparison of Classifier Results
Boxer: Interactive Comparison of Classifier Results
Michael Gleicher
Aditya Barve
Xinyi Yu
Florian Heimerl
VLM
HAI
6
40
0
16 Apr 2020
Designing Tools for Semi-Automated Detection of Machine Learning Biases:
  An Interview Study
Designing Tools for Semi-Automated Detection of Machine Learning Biases: An Interview Study
Po-Ming Law
Sana Malik
F. Du
Moumita Sinha
19
12
0
13 Mar 2020
ViCE: Visual Counterfactual Explanations for Machine Learning Models
ViCE: Visual Counterfactual Explanations for Machine Learning Models
Oscar Gomez
Steffen Holter
Jun Yuan
E. Bertini
AAML
52
93
0
05 Mar 2020
Algorithmic Recourse: from Counterfactual Explanations to Interventions
Algorithmic Recourse: from Counterfactual Explanations to Interventions
Amir-Hossein Karimi
Bernhard Schölkopf
Isabel Valera
CML
11
337
0
14 Feb 2020
HypoML: Visual Analysis for Hypothesis-based Evaluation of Machine
  Learning Models
HypoML: Visual Analysis for Hypothesis-based Evaluation of Machine Learning Models
Qianwen Wang
W. Alexander
J. Pegg
Huamin Qu
Min Chen
VLM
12
10
0
12 Feb 2020
Explainable Active Learning (XAL): An Empirical Study of How Local
  Explanations Impact Annotator Experience
Explainable Active Learning (XAL): An Empirical Study of How Local Explanations Impact Annotator Experience
Bhavya Ghai
Q. V. Liao
Yunfeng Zhang
Rachel K. E. Bellamy
Klaus Mueller
12
29
0
24 Jan 2020
On the Morality of Artificial Intelligence
On the Morality of Artificial Intelligence
A. Luccioni
Yoshua Bengio
AI4TS
FaML
8
23
0
26 Dec 2019
Group Fairness in Bandit Arm Selection
Group Fairness in Bandit Arm Selection
Candice Schumann
Zhi Lang
Nicholas Mattei
John P. Dickerson
FaML
14
15
0
09 Dec 2019
ConfusionFlow: A model-agnostic visualization for temporal analysis of
  classifier confusion
ConfusionFlow: A model-agnostic visualization for temporal analysis of classifier confusion
A. Hinterreiter
Peter Ruch
Holger Stitz
Martin Ennemoser
J. Bernard
Hendrik Strobelt
M. Streit
11
43
0
02 Oct 2019
Model-Agnostic Counterfactual Explanations for Consequential Decisions
Model-Agnostic Counterfactual Explanations for Consequential Decisions
Amir-Hossein Karimi
Gilles Barthe
Borja Balle
Isabel Valera
25
317
0
27 May 2019
Previous
12345