ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1907.04809
  4. Cited By
Variational Autoencoders and Nonlinear ICA: A Unifying Framework
v1v2v3v4 (latest)

Variational Autoencoders and Nonlinear ICA: A Unifying Framework

International Conference on Artificial Intelligence and Statistics (AISTATS), 2019
10 July 2019
Ilyes Khemakhem
Diederik P. Kingma
Ricardo Pio Monti
Aapo Hyvarinen
    OOD
ArXiv (abs)PDFHTML

Papers citing "Variational Autoencoders and Nonlinear ICA: A Unifying Framework"

50 / 402 papers shown
Learning Causally Disentangled Representations via the Principle of
  Independent Causal Mechanisms
Learning Causally Disentangled Representations via the Principle of Independent Causal MechanismsInternational Joint Conference on Artificial Intelligence (IJCAI), 2023
Aneesh Komanduri
Yongkai Wu
Feng Chen
Xintao Wu
CMLOOD
486
17
0
02 Jun 2023
Nonparametric Identifiability of Causal Representations from Unknown
  Interventions
Nonparametric Identifiability of Causal Representations from Unknown InterventionsNeural Information Processing Systems (NeurIPS), 2023
Julius von Kügelgen
M. Besserve
Wendong Liang
Luigi Gresele
Armin Kekić
Elias Bareinboim
David M. Blei
Bernhard Schölkopf
CML
527
80
0
01 Jun 2023
Not All Neuro-Symbolic Concepts Are Created Equal: Analysis and
  Mitigation of Reasoning Shortcuts
Not All Neuro-Symbolic Concepts Are Created Equal: Analysis and Mitigation of Reasoning ShortcutsNeural Information Processing Systems (NeurIPS), 2023
Emanuele Marconato
Stefano Teso
Antonio Vergari
Baptiste Caramiaux
375
54
0
31 May 2023
Neuro-Causal Factor Analysis
Neuro-Causal Factor Analysis
Alex Markham
Ming-Yuan Liu
Bryon Aragam
Liam Solus
CML
192
5
0
31 May 2023
Disentanglement via Latent Quantization
Disentanglement via Latent QuantizationNeural Information Processing Systems (NeurIPS), 2023
Kyle Hsu
W. Dorrell
James C. R. Whittington
Jiajun Wu
Chelsea Finn
DRL
386
36
0
28 May 2023
Causal Component Analysis
Causal Component AnalysisNeural Information Processing Systems (NeurIPS), 2023
Wendong Liang
Armin Kekić
Julius von Kügelgen
Simon Buchholz
M. Besserve
Luigi Gresele
Bernhard Schölkopf
CML
408
48
0
26 May 2023
On the Identifiability of Switching Dynamical Systems
On the Identifiability of Switching Dynamical SystemsInternational Conference on Machine Learning (ICML), 2023
Carles Balsells-Rodas
Yixin Wang
Yingzhen Li
368
7
0
25 May 2023
Provably Learning Object-Centric Representations
Provably Learning Object-Centric RepresentationsInternational Conference on Machine Learning (ICML), 2023
Jack Brady
Roland S. Zimmermann
Yash Sharma
Bernhard Schölkopf
Julius von Kügelgen
Wieland Brendel
OCL
256
49
0
23 May 2023
Latent Processes Identification From Multi-View Time Series
Latent Processes Identification From Multi-View Time SeriesInternational Joint Conference on Artificial Intelligence (IJCAI), 2023
Zenan Huang
Haobo Wang
Jiaqi Zhao
Nenggan Zheng
AI4TS
138
5
0
14 May 2023
A Cookbook of Self-Supervised Learning
A Cookbook of Self-Supervised Learning
Randall Balestriero
Mark Ibrahim
Vlad Sobal
Ari S. Morcos
Shashank Shekhar
...
Pierre Fernandez
Amir Bar
Hamed Pirsiavash
Yann LeCun
Micah Goldblum
SyDaFedMLSSL
455
366
0
24 Apr 2023
Leveraging sparse and shared feature activations for disentangled
  representation learning
Leveraging sparse and shared feature activations for disentangled representation learningNeural Information Processing Systems (NeurIPS), 2023
Marco Fumero
F. Wenzel
Luca Zancato
Alessandro Achille
Emanuele Rodolà
Stefano Soatto
Bernhard Schölkopf
Francesco Locatello
OODDRL
294
34
0
17 Apr 2023
Nonlinear Independent Component Analysis for Principled Disentanglement
  in Unsupervised Deep Learning
Nonlinear Independent Component Analysis for Principled Disentanglement in Unsupervised Deep LearningPatterns (Patterns), 2023
Aapo Hyvarinen
Ilyes Khemakhem
H. Morioka
CMLOOD
304
55
0
29 Mar 2023
Causal Reasoning in the Presence of Latent Confounders via Neural ADMG
  Learning
Causal Reasoning in the Presence of Latent Confounders via Neural ADMG LearningInternational Conference on Learning Representations (ICLR), 2023
Matthew Ashman
Chao Ma
Agrin Hilmkil
Joel Jennings
Cheng Zhang
CMLAI4CE
179
15
0
22 Mar 2023
Neuro-Symbolic Reasoning Shortcuts: Mitigation Strategies and their
  Limitations
Neuro-Symbolic Reasoning Shortcuts: Mitigation Strategies and their LimitationsInternational Workshop on Neural-Symbolic Learning and Reasoning (NeSy), 2023
Emanuele Marconato
Stefano Teso
Baptiste Caramiaux
NAI
192
9
0
22 Mar 2023
Discovering Predictable Latent Factors for Time Series Forecasting
Discovering Predictable Latent Factors for Time Series ForecastingIEEE Transactions on Knowledge and Data Engineering (TKDE), 2023
Jingyi Hou
Zhen Dong
Jiayu Zhou
Zhijie Liu
AI4TSBDL
223
1
0
18 Mar 2023
Causal Discovery from Temporal Data: An Overview and New Perspectives
Causal Discovery from Temporal Data: An Overview and New PerspectivesACM Computing Surveys (ACM Comput. Surv.), 2023
Chang Gong
Di Yao
Chuzhe Zhang
Wenbin Li
Jingping Bi
AI4TSCML
408
49
0
17 Mar 2023
Identifiability Results for Multimodal Contrastive Learning
Identifiability Results for Multimodal Contrastive LearningInternational Conference on Learning Representations (ICLR), 2023
Imant Daunhawer
Alice Bizeul
Emanuele Palumbo
Alexander Marx
Julia E. Vogt
253
54
0
16 Mar 2023
Masked Images Are Counterfactual Samples for Robust Fine-tuning
Masked Images Are Counterfactual Samples for Robust Fine-tuningComputer Vision and Pattern Recognition (CVPR), 2023
Yao Xiao
Ziyi Tang
Pengxu Wei
Cong Liu
Guanbin Li
361
23
0
06 Mar 2023
Measuring axiomatic soundness of counterfactual image models
Measuring axiomatic soundness of counterfactual image modelsInternational Conference on Learning Representations (ICLR), 2023
M. Monteiro
Fabio De Sousa Ribeiro
Nick Pawlowski
Daniel Coelho De Castro
Ben Glocker
353
36
0
02 Mar 2023
Representation Disentaglement via Regularization by Causal
  Identification
Representation Disentaglement via Regularization by Causal Identification
Juan Castorena
OODCML
405
0
0
28 Feb 2023
Interpretable and intervenable ultrasonography-based machine learning
  models for pediatric appendicitis
Interpretable and intervenable ultrasonography-based machine learning models for pediatric appendicitis
Ricards Marcinkevics
Patricia Reis Wolfertstetter
Ugne Klimiene
Kieran Chin-Cheong
Alyssia Paschke
...
David Niederberger
S. Wellmann
Ece Ozkan
C. Knorr
Julia E. Vogt
318
35
0
28 Feb 2023
Causally Disentangled Generative Variational AutoEncoder
Causally Disentangled Generative Variational AutoEncoderEuropean Conference on Artificial Intelligence (ECAI), 2023
SeungHwan An
Kyungwoo Song
Jong-June Jeon
OODCoGeDRLCML
195
7
0
23 Feb 2023
CMVAE: Causal Meta VAE for Unsupervised Meta-Learning
CMVAE: Causal Meta VAE for Unsupervised Meta-LearningAAAI Conference on Artificial Intelligence (AAAI), 2023
Guodong Qi
Huimin Yu
CMLSSL
173
9
0
20 Feb 2023
Entity Aware Modelling: A Survey
Entity Aware Modelling: A Survey
Rahul Ghosh
Haoyu Yang
A. Khandelwal
Erhu He
Arvind Renganathan
Somya Sharma
X. Jia
Vipin Kumar
242
7
0
16 Feb 2023
Debiasing Recommendation by Learning Identifiable Latent Confounders
Debiasing Recommendation by Learning Identifiable Latent ConfoundersKnowledge Discovery and Data Mining (KDD), 2023
Qing Zhang
Xiaoying Zhang
Yang Liu
Hongning Wang
Min Gao
Jiheng Zhang
Ruocheng Guo
CML
316
17
0
10 Feb 2023
Concept Algebra for (Score-Based) Text-Controlled Generative Models
Concept Algebra for (Score-Based) Text-Controlled Generative ModelsNeural Information Processing Systems (NeurIPS), 2023
Zihao Wang
Lin Gui
Jeffrey Negrea
Victor Veitch
CoGeDiffM
553
60
0
07 Feb 2023
Identifiability of latent-variable and structural-equation models: from
  linear to nonlinear
Identifiability of latent-variable and structural-equation models: from linear to nonlinearAnnals of the Institute of Statistical Mathematics (AISM), 2023
Aapo Hyvarinen
Ilyes Khemakhem
R. Monti
CML
281
61
0
06 Feb 2023
Counterfactual Identifiability of Bijective Causal Models
Counterfactual Identifiability of Bijective Causal ModelsInternational Conference on Machine Learning (ICML), 2023
Arash Nasr-Esfahany
MohammadIman Alizadeh
Devavrat Shah
CMLBDL
459
37
0
04 Feb 2023
Unpaired Multi-Domain Causal Representation Learning
Unpaired Multi-Domain Causal Representation LearningNeural Information Processing Systems (NeurIPS), 2023
Nils Sturma
C. Squires
Mathias Drton
Caroline Uhler
OODCML
292
30
0
02 Feb 2023
A Survey of Methods, Challenges and Perspectives in Causality
A Survey of Methods, Challenges and Perspectives in Causality
Gaël Gendron
Michael Witbrock
Gillian Dobbie
OODAI4CECML
431
13
0
01 Feb 2023
Emerging Synergies in Causality and Deep Generative Models: A Survey
Emerging Synergies in Causality and Deep Generative Models: A Survey
Guanglin Zhou
Shaoan Xie
Guang-Yuan Hao
Shiming Chen
Erdun Gao
Xiwei Xu
Chen Wang
Liming Zhu
Lina Yao
Kun Zhang
AI4CE
471
14
0
29 Jan 2023
Score-based Causal Representation Learning with Interventions
Score-based Causal Representation Learning with Interventions
Burak Varici
Emre Acartürk
Karthikeyan Shanmugam
Abhishek Kumar
A. Tajer
CML
376
47
0
19 Jan 2023
Causal conditional hidden Markov model for multimodal traffic prediction
Causal conditional hidden Markov model for multimodal traffic predictionAAAI Conference on Artificial Intelligence (AAAI), 2023
Yu Zhao
Pan Deng
Junting Liu
Xiaofeng Jia
Mulan X. Wang
236
16
0
19 Jan 2023
Posterior Collapse and Latent Variable Non-identifiability
Posterior Collapse and Latent Variable Non-identifiabilityNeural Information Processing Systems (NeurIPS), 2023
Yixin Wang
David M. Blei
John P. Cunningham
CMLDRL
332
86
0
02 Jan 2023
eVAE: Evolutionary Variational Autoencoder
eVAE: Evolutionary Variational AutoencoderIEEE Transactions on Neural Networks and Learning Systems (TNNLS), 2023
Zhangkai Wu
LongBing Cao
Lei Qi
BDLDRL
248
18
0
01 Jan 2023
An Adaptive Kernel Approach to Federated Learning of Heterogeneous
  Causal Effects
An Adaptive Kernel Approach to Federated Learning of Heterogeneous Causal EffectsNeural Information Processing Systems (NeurIPS), 2023
Thanh Vinh Vo
Arnab Bhattacharyya
Young Lee
Tze-Yun Leong
FedML
287
25
0
01 Jan 2023
ContraFeat: Contrasting Deep Features for Semantic Discovery
ContraFeat: Contrasting Deep Features for Semantic DiscoveryAAAI Conference on Artificial Intelligence (AAAI), 2022
Xinqi Zhu
Chang Xu
Dacheng Tao
DRL
281
2
0
14 Dec 2022
Linear Causal Disentanglement via Interventions
Linear Causal Disentanglement via InterventionsInternational Conference on Machine Learning (ICML), 2022
C. Squires
A. Seigal
Salil Bhate
Caroline Uhler
CML
409
79
0
29 Nov 2022
Causal Inference with Conditional Instruments using Deep Generative
  Models
Causal Inference with Conditional Instruments using Deep Generative ModelsAAAI Conference on Artificial Intelligence (AAAI), 2022
Debo Cheng
Ziqi Xu
Jiuyong Li
Lin Liu
Jixue Liu
T. Le
CML
132
22
0
29 Nov 2022
PatchMix Augmentation to Identify Causal Features in Few-shot Learning
PatchMix Augmentation to Identify Causal Features in Few-shot LearningIEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2022
C. Xu
Chen Liu
Xinwei Sun
Siqian Yang
Yabiao Wang
Chengjie Wang
Yanwei Fu
163
25
0
29 Nov 2022
Synergies between Disentanglement and Sparsity: Generalization and
  Identifiability in Multi-Task Learning
Synergies between Disentanglement and Sparsity: Generalization and Identifiability in Multi-Task LearningInternational Conference on Machine Learning (ICML), 2022
Sébastien Lachapelle
T. Deleu
Divyat Mahajan
Ioannis Mitliagkas
Yoshua Bengio
Damien Scieur
Quentin Bertrand
262
39
0
26 Nov 2022
Disentangled Representation Learning
Disentangled Representation LearningIEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2022
Xin Eric Wang
Hong Chen
Siao Tang
Zihao Wu
Wenwu Zhu
DRL
548
154
0
21 Nov 2022
Representational dissimilarity metric spaces for stochastic neural
  networks
Representational dissimilarity metric spaces for stochastic neural networksInternational Conference on Learning Representations (ICLR), 2022
Lyndon Duong
Jingyang Zhou
Josue Nassar
Jules Berman
Jeroen Olieslagers
Alex H. Williams
237
26
0
21 Nov 2022
Confounder Balancing for Instrumental Variable Regression with Latent
  Variable
Confounder Balancing for Instrumental Variable Regression with Latent Variable
Anpeng Wu
Kun Kuang
Ruoxuan Xiong
Bo Li
Leilei Gan
CML
282
0
0
18 Nov 2022
Mechanistic Mode Connectivity
Mechanistic Mode ConnectivityInternational Conference on Machine Learning (ICML), 2022
Ekdeep Singh Lubana
Eric J. Bigelow
Robert P. Dick
David M. Krueger
Hidenori Tanaka
302
56
0
15 Nov 2022
Disentangling Variational Autoencoders
Disentangling Variational Autoencoders
Rafael Pastrana
CoGeDRL
146
4
0
14 Nov 2022
Learning Causal Representations of Single Cells via Sparse Mechanism
  Shift Modeling
Learning Causal Representations of Single Cells via Sparse Mechanism Shift ModelingCLEaR (CLEaR), 2022
Romain Lopez
Natavsa Tagasovska
Stephen Ra
K. Cho
J. Pritchard
Aviv Regev
OODCMLDRL
417
50
0
07 Nov 2022
Temporally Disentangled Representation Learning
Temporally Disentangled Representation LearningNeural Information Processing Systems (NeurIPS), 2022
Weiran Yao
Guangyi Chen
Kun Zhang
CMLBDLOOD
263
64
0
24 Oct 2022
CLEAR: Generative Counterfactual Explanations on Graphs
CLEAR: Generative Counterfactual Explanations on GraphsNeural Information Processing Systems (NeurIPS), 2022
Jing Ma
Ruocheng Guo
Saumitra Mishra
Aidong Zhang
Jundong Li
CMLOOD
194
62
0
16 Oct 2022
Provable Subspace Identification Under Post-Nonlinear Mixtures
Provable Subspace Identification Under Post-Nonlinear MixturesNeural Information Processing Systems (NeurIPS), 2022
Qi Lyu
Xiao Fu
CoGe
208
1
0
14 Oct 2022
Previous
123456789
Next
Page 5 of 9