ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1907.08956
  4. Cited By
Tutorial: Deriving the Standard Variational Autoencoder (VAE) Loss
  Function

Tutorial: Deriving the Standard Variational Autoencoder (VAE) Loss Function

21 July 2019
Stephen G. Odaibo
    GANBDLDRL
ArXiv (abs)PDFHTML

Papers citing "Tutorial: Deriving the Standard Variational Autoencoder (VAE) Loss Function"

22 / 22 papers shown
Title
Using KL-Divergence to Focus Frequency Information in Low-Light Image Enhancement
Using KL-Divergence to Focus Frequency Information in Low-Light Image Enhancement
Yan Xingyang
Huang Xiaohong
Zhang Zhao
You Tian
Xu Ziheng
105
0
0
16 Sep 2025
Active Learning-Guided Seq2Seq Variational Autoencoder for Multi-target Inhibitor Generation
Active Learning-Guided Seq2Seq Variational Autoencoder for Multi-target Inhibitor Generation
Julia Vilalta Mor
Alexis Molina
Laura Ortega Varga
Isaac Filella-Merce
Víctor Guallar
103
1
0
18 Jun 2025
Deep evolving semi-supervised anomaly detection
Deep evolving semi-supervised anomaly detection
Jack Belham
Aryan Bhosale
Samrat Mukherjee
Biplab Banerjee
Fabio Cuzzolin
210
0
0
01 Dec 2024
Energy-Based Prior Latent Space Diffusion model for Reconstruction of
  Lumbar Vertebrae from Thick Slice MRI
Energy-Based Prior Latent Space Diffusion model for Reconstruction of Lumbar Vertebrae from Thick Slice MRI
Yanke Wang
Yolanne Y. R. Lee
Aurelio Dolfini
Markus Reischl
E. Konukoglu
Kyriakos Flouris
MedIm
186
1
0
30 Nov 2024
Balanced Neural ODEs: nonlinear model order reduction and Koopman operator approximations
Balanced Neural ODEs: nonlinear model order reduction and Koopman operator approximationsInternational Conference on Learning Representations (ICLR), 2024
Julius Aka
Johannes Brunnemann
Jörg Eiden
Arne Speerforck
Lars Mikelsons
433
3
0
14 Oct 2024
CF-OPT: Counterfactual Explanations for Structured Prediction
CF-OPT: Counterfactual Explanations for Structured Prediction
Germain Vivier-Ardisson
Alexandre Forel
Axel Parmentier
Thibaut Vidal
OffRLCMLBDL
336
3
0
28 May 2024
Deep Data Consistency: a Fast and Robust Diffusion Model-based Solver
  for Inverse Problems
Deep Data Consistency: a Fast and Robust Diffusion Model-based Solver for Inverse Problems
Hanyu Chen
Zhixiu Hao
Liying Xiao
DiffM
265
4
0
17 May 2024
Projected Belief Networks With Discriminative Alignment for Acoustic
  Event Classification: Rivaling State of the Art CNNs
Projected Belief Networks With Discriminative Alignment for Acoustic Event Classification: Rivaling State of the Art CNNs
P. Baggenstoss
Kevin Wilkinghoff
F. Govaers
Frank Kurth
82
1
0
20 Jan 2024
Uncertainty-aware transfer across tasks using hybrid model-based
  successor feature reinforcement learning
Uncertainty-aware transfer across tasks using hybrid model-based successor feature reinforcement learning
Parvin Malekzadeh
Ming Hou
Konstantinos N. Plataniotis
238
1
0
16 Oct 2023
Generalizing Across Domains in Diabetic Retinopathy via Variational
  Autoencoders
Generalizing Across Domains in Diabetic Retinopathy via Variational Autoencoders
Sharon Chokuwa
M. H. Khan
225
10
0
20 Sep 2023
Variational Self-Supervised Contrastive Learning Using Beta Divergence
Variational Self-Supervised Contrastive Learning Using Beta Divergence
Mehmet Can Yavuz
Berrin Yanikoglu
SSL
327
1
0
05 Sep 2023
Data-driven Nonlinear Parametric Model Order Reduction Framework using
  Deep Hierarchical Variational Autoencoder
Data-driven Nonlinear Parametric Model Order Reduction Framework using Deep Hierarchical Variational AutoencoderEngineering computations (Eng. Comput.), 2023
Sihun Lee
Sangmin Lee
Ki-Hyun Jang
Haeseong Cho
Sang-Joon Shin
146
9
0
10 Jul 2023
Tackling Multimodal Device Distributions in Inverse Photonic Design
  using Invertible Neural Networks
Tackling Multimodal Device Distributions in Inverse Photonic Design using Invertible Neural Networks
Michel Frising
J. Bravo-Abad
F. Prins
116
6
0
29 Aug 2022
Variational Autoencoder Assisted Neural Network Likelihood RSRP
  Prediction Model
Variational Autoencoder Assisted Neural Network Likelihood RSRP Prediction ModelIEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), 2022
Peizheng Li
Xiaoyang Wang
Robert Piechocki
S. Kapoor
A. Doufexi
Arjun Parekh
DRL
94
3
0
27 Jun 2022
Hybrid Predictive Coding: Inferring, Fast and Slow
Hybrid Predictive Coding: Inferring, Fast and Slow
Alexander Tschantz
Beren Millidge
A. Seth
Christopher L. Buckley
197
49
0
05 Apr 2022
Unsupervised Clustering of Roman Potsherds via Variational Autoencoders
Unsupervised Clustering of Roman Potsherds via Variational AutoencodersJournal of Archaeological Science (JAS), 2022
S. Parisotto
Ninetta Leone
Carola-Bibiane Schönlieb
Alessandro Launaro
DRL
60
18
0
14 Mar 2022
Variational Inference for Quantifying Inter-observer Variability in
  Segmentation of Anatomical Structures
Variational Inference for Quantifying Inter-observer Variability in Segmentation of Anatomical Structures
Xiaofeng Liu
Fangxu Xing
Thibault Marin
Xiaofeng Liu
Jonghye Woo
198
7
0
18 Jan 2022
Disentangling Generative Factors of Physical Fields Using Variational
  Autoencoders
Disentangling Generative Factors of Physical Fields Using Variational Autoencoders
Christian L. Jacobsen
Karthik Duraisamy
OODCoGeCMLDRL
112
15
0
15 Sep 2021
Maximum Entropy Auto-Encoding
Maximum Entropy Auto-Encoding
P. Baggenstoss
110
0
0
13 Apr 2021
Factor Analysis, Probabilistic Principal Component Analysis, Variational
  Inference, and Variational Autoencoder: Tutorial and Survey
Factor Analysis, Probabilistic Principal Component Analysis, Variational Inference, and Variational Autoencoder: Tutorial and Survey
Benyamin Ghojogh
A. Ghodsi
Fakhri Karray
Mark Crowley
DRL
200
44
0
04 Jan 2021
Deep generative demixing: Recovering Lipschitz signals from noisy
  subgaussian mixtures
Deep generative demixing: Recovering Lipschitz signals from noisy subgaussian mixtures
Aaron Berk
114
0
0
13 Oct 2020
Exploiting Latent Codes: Interactive Fashion Product Generation, Similar
  Image Retrieval, and Cross-Category Recommendation using Variational
  Autoencoders
Exploiting Latent Codes: Interactive Fashion Product Generation, Similar Image Retrieval, and Cross-Category Recommendation using Variational Autoencoders
James-Andrew R. Sarmiento
DRL
107
5
0
02 Sep 2020
1