ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1907.09701
  4. Cited By
Benchmarking Attribution Methods with Relative Feature Importance

Benchmarking Attribution Methods with Relative Feature Importance

23 July 2019
Mengjiao Yang
Been Kim
    FAtt
    XAI
ArXivPDFHTML

Papers citing "Benchmarking Attribution Methods with Relative Feature Importance"

34 / 34 papers shown
Title
From Pixels to Perception: Interpretable Predictions via Instance-wise Grouped Feature Selection
From Pixels to Perception: Interpretable Predictions via Instance-wise Grouped Feature Selection
Moritz Vandenhirtz
Julia E. Vogt
38
0
0
09 May 2025
Feature Importance Depends on Properties of the Data: Towards Choosing the Correct Explanations for Your Data and Decision Trees based Models
Feature Importance Depends on Properties of the Data: Towards Choosing the Correct Explanations for Your Data and Decision Trees based Models
Célia Wafa Ayad
Thomas Bonnier
Benjamin Bosch
Sonali Parbhoo
Jesse Read
FAtt
XAI
103
0
0
11 Feb 2025
Navigating the Maze of Explainable AI: A Systematic Approach to Evaluating Methods and Metrics
Navigating the Maze of Explainable AI: A Systematic Approach to Evaluating Methods and Metrics
Lukas Klein
Carsten T. Lüth
U. Schlegel
Till J. Bungert
Mennatallah El-Assady
Paul F. Jäger
XAI
ELM
42
2
0
03 Jan 2025
Explainable AI needs formal notions of explanation correctness
Explainable AI needs formal notions of explanation correctness
Stefan Haufe
Rick Wilming
Benedict Clark
Rustam Zhumagambetov
Danny Panknin
Ahcène Boubekki
XAI
31
1
0
22 Sep 2024
Comprehensive Attribution: Inherently Explainable Vision Model with
  Feature Detector
Comprehensive Attribution: Inherently Explainable Vision Model with Feature Detector
Xianren Zhang
Dongwon Lee
Suhang Wang
VLM
FAtt
45
3
0
27 Jul 2024
Beyond the Veil of Similarity: Quantifying Semantic Continuity in Explainable AI
Beyond the Veil of Similarity: Quantifying Semantic Continuity in Explainable AI
Qi Huang
Emanuele Mezzi
Osman Mutlu
Miltiadis Kofinas
Vidya Prasad
Shadnan Azwad Khan
Elena Ranguelova
N. V. Stein
45
0
0
17 Jul 2024
T-Explainer: A Model-Agnostic Explainability Framework Based on Gradients
T-Explainer: A Model-Agnostic Explainability Framework Based on Gradients
Evandro S. Ortigossa
Fábio F. Dias
Brian Barr
Claudio T. Silva
L. G. Nonato
FAtt
61
2
0
25 Apr 2024
3VL: Using Trees to Improve Vision-Language Models' Interpretability
3VL: Using Trees to Improve Vision-Language Models' Interpretability
Nir Yellinek
Leonid Karlinsky
Raja Giryes
CoGe
VLM
49
4
0
28 Dec 2023
Can We Trust Explainable AI Methods on ASR? An Evaluation on Phoneme
  Recognition
Can We Trust Explainable AI Methods on ASR? An Evaluation on Phoneme Recognition
Xiao-lan Wu
P. Bell
A. Rajan
19
5
0
29 May 2023
The Meta-Evaluation Problem in Explainable AI: Identifying Reliable
  Estimators with MetaQuantus
The Meta-Evaluation Problem in Explainable AI: Identifying Reliable Estimators with MetaQuantus
Anna Hedström
P. Bommer
Kristoffer K. Wickstrom
Wojciech Samek
Sebastian Lapuschkin
Marina M.-C. Höhne
31
21
0
14 Feb 2023
On The Coherence of Quantitative Evaluation of Visual Explanations
On The Coherence of Quantitative Evaluation of Visual Explanations
Benjamin Vandersmissen
José Oramas
XAI
FAtt
34
3
0
14 Feb 2023
Variational Information Pursuit for Interpretable Predictions
Variational Information Pursuit for Interpretable Predictions
Aditya Chattopadhyay
Kwan Ho Ryan Chan
B. Haeffele
D. Geman
René Vidal
DRL
21
10
0
06 Feb 2023
Tracr: Compiled Transformers as a Laboratory for Interpretability
Tracr: Compiled Transformers as a Laboratory for Interpretability
David Lindner
János Kramár
Sebastian Farquhar
Matthew Rahtz
Tom McGrath
Vladimir Mikulik
27
72
0
12 Jan 2023
Benchmarking Heterogeneous Treatment Effect Models through the Lens of
  Interpretability
Benchmarking Heterogeneous Treatment Effect Models through the Lens of Interpretability
Jonathan Crabbé
Alicia Curth
Ioana Bica
M. Schaar
CML
22
16
0
16 Jun 2022
B-cos Networks: Alignment is All We Need for Interpretability
B-cos Networks: Alignment is All We Need for Interpretability
Moritz D Boehle
Mario Fritz
Bernt Schiele
39
84
0
20 May 2022
Clinical outcome prediction under hypothetical interventions -- a
  representation learning framework for counterfactual reasoning
Clinical outcome prediction under hypothetical interventions -- a representation learning framework for counterfactual reasoning
Yikuan Li
M. Mamouei
Shishir Rao
A. Hassaine
D. Canoy
Thomas Lukasiewicz
K. Rahimi
G. Salimi-Khorshidi
OOD
CML
AI4CE
28
1
0
15 May 2022
Do Users Benefit From Interpretable Vision? A User Study, Baseline, And
  Dataset
Do Users Benefit From Interpretable Vision? A User Study, Baseline, And Dataset
Leon Sixt
M. Schuessler
Oana-Iuliana Popescu
Philipp Weiß
Tim Landgraf
FAtt
26
14
0
25 Apr 2022
Human-Centered Concept Explanations for Neural Networks
Human-Centered Concept Explanations for Neural Networks
Chih-Kuan Yeh
Been Kim
Pradeep Ravikumar
FAtt
34
25
0
25 Feb 2022
Evaluating Feature Attribution Methods in the Image Domain
Evaluating Feature Attribution Methods in the Image Domain
Arne Gevaert
Axel-Jan Rousseau
Thijs Becker
D. Valkenborg
T. D. Bie
Yvan Saeys
FAtt
21
22
0
22 Feb 2022
Explainable Artificial Intelligence Methods in Combating Pandemics: A
  Systematic Review
Explainable Artificial Intelligence Methods in Combating Pandemics: A Systematic Review
F. Giuste
Wenqi Shi
Yuanda Zhu
Tarun Naren
Monica Isgut
Ying Sha
L. Tong
Mitali S. Gupte
May D. Wang
21
73
0
23 Dec 2021
Evaluating saliency methods on artificial data with different background
  types
Evaluating saliency methods on artificial data with different background types
Céline Budding
Fabian Eitel
K. Ritter
Stefan Haufe
XAI
FAtt
MedIm
24
5
0
09 Dec 2021
HIVE: Evaluating the Human Interpretability of Visual Explanations
HIVE: Evaluating the Human Interpretability of Visual Explanations
Sunnie S. Y. Kim
Nicole Meister
V. V. Ramaswamy
Ruth C. Fong
Olga Russakovsky
66
114
0
06 Dec 2021
Self-Interpretable Model with TransformationEquivariant Interpretation
Self-Interpretable Model with TransformationEquivariant Interpretation
Yipei Wang
Xiaoqian Wang
38
23
0
09 Nov 2021
A Survey on the Robustness of Feature Importance and Counterfactual
  Explanations
A Survey on the Robustness of Feature Importance and Counterfactual Explanations
Saumitra Mishra
Sanghamitra Dutta
Jason Long
Daniele Magazzeni
AAML
9
58
0
30 Oct 2021
Longitudinal Distance: Towards Accountable Instance Attribution
Longitudinal Distance: Towards Accountable Instance Attribution
Rosina O. Weber
Prateek Goel
S. Amiri
G. Simpson
16
0
0
23 Aug 2021
Synthetic Benchmarks for Scientific Research in Explainable Machine
  Learning
Synthetic Benchmarks for Scientific Research in Explainable Machine Learning
Yang Liu
Sujay Khandagale
Colin White
W. Neiswanger
37
65
0
23 Jun 2021
Do Feature Attribution Methods Correctly Attribute Features?
Do Feature Attribution Methods Correctly Attribute Features?
Yilun Zhou
Serena Booth
Marco Tulio Ribeiro
J. Shah
FAtt
XAI
24
132
0
27 Apr 2021
Improving Attribution Methods by Learning Submodular Functions
Improving Attribution Methods by Learning Submodular Functions
Piyushi Manupriya
Tarun Ram Menta
S. Jagarlapudi
V. Balasubramanian
TDI
22
6
0
19 Apr 2021
Do Input Gradients Highlight Discriminative Features?
Do Input Gradients Highlight Discriminative Features?
Harshay Shah
Prateek Jain
Praneeth Netrapalli
AAML
FAtt
21
57
0
25 Feb 2021
Captum: A unified and generic model interpretability library for PyTorch
Captum: A unified and generic model interpretability library for PyTorch
Narine Kokhlikyan
Vivek Miglani
Miguel Martin
Edward Wang
B. Alsallakh
...
Alexander Melnikov
Natalia Kliushkina
Carlos Araya
Siqi Yan
Orion Reblitz-Richardson
FAtt
29
821
0
16 Sep 2020
Evaluating and Aggregating Feature-based Model Explanations
Evaluating and Aggregating Feature-based Model Explanations
Umang Bhatt
Adrian Weller
J. M. F. Moura
XAI
30
218
0
01 May 2020
Measuring and improving the quality of visual explanations
Measuring and improving the quality of visual explanations
Agnieszka Grabska-Barwiñska
XAI
FAtt
14
3
0
14 Mar 2020
On Completeness-aware Concept-Based Explanations in Deep Neural Networks
On Completeness-aware Concept-Based Explanations in Deep Neural Networks
Chih-Kuan Yeh
Been Kim
Sercan Ö. Arik
Chun-Liang Li
Tomas Pfister
Pradeep Ravikumar
FAtt
122
297
0
17 Oct 2019
Explaining Anomalies Detected by Autoencoders Using SHAP
Explaining Anomalies Detected by Autoencoders Using SHAP
Liat Antwarg
Ronnie Mindlin Miller
Bracha Shapira
L. Rokach
FAtt
TDI
11
86
0
06 Mar 2019
1