Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1907.09701
Cited By
Benchmarking Attribution Methods with Relative Feature Importance
23 July 2019
Mengjiao Yang
Been Kim
FAtt
XAI
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Benchmarking Attribution Methods with Relative Feature Importance"
34 / 34 papers shown
Title
From Pixels to Perception: Interpretable Predictions via Instance-wise Grouped Feature Selection
Moritz Vandenhirtz
Julia E. Vogt
38
0
0
09 May 2025
Feature Importance Depends on Properties of the Data: Towards Choosing the Correct Explanations for Your Data and Decision Trees based Models
Célia Wafa Ayad
Thomas Bonnier
Benjamin Bosch
Sonali Parbhoo
Jesse Read
FAtt
XAI
103
0
0
11 Feb 2025
Navigating the Maze of Explainable AI: A Systematic Approach to Evaluating Methods and Metrics
Lukas Klein
Carsten T. Lüth
U. Schlegel
Till J. Bungert
Mennatallah El-Assady
Paul F. Jäger
XAI
ELM
42
2
0
03 Jan 2025
Explainable AI needs formal notions of explanation correctness
Stefan Haufe
Rick Wilming
Benedict Clark
Rustam Zhumagambetov
Danny Panknin
Ahcène Boubekki
XAI
31
1
0
22 Sep 2024
Comprehensive Attribution: Inherently Explainable Vision Model with Feature Detector
Xianren Zhang
Dongwon Lee
Suhang Wang
VLM
FAtt
45
3
0
27 Jul 2024
Beyond the Veil of Similarity: Quantifying Semantic Continuity in Explainable AI
Qi Huang
Emanuele Mezzi
Osman Mutlu
Miltiadis Kofinas
Vidya Prasad
Shadnan Azwad Khan
Elena Ranguelova
Niki van Stein
45
0
0
17 Jul 2024
T-Explainer: A Model-Agnostic Explainability Framework Based on Gradients
Evandro S. Ortigossa
Fábio F. Dias
Brian Barr
Claudio T. Silva
L. G. Nonato
FAtt
61
2
0
25 Apr 2024
3VL: Using Trees to Improve Vision-Language Models' Interpretability
Nir Yellinek
Leonid Karlinsky
Raja Giryes
CoGe
VLM
49
4
0
28 Dec 2023
Can We Trust Explainable AI Methods on ASR? An Evaluation on Phoneme Recognition
Xiao-lan Wu
P. Bell
A. Rajan
19
5
0
29 May 2023
The Meta-Evaluation Problem in Explainable AI: Identifying Reliable Estimators with MetaQuantus
Anna Hedström
P. Bommer
Kristoffer K. Wickstrom
Wojciech Samek
Sebastian Lapuschkin
Marina M.-C. Höhne
34
21
0
14 Feb 2023
On The Coherence of Quantitative Evaluation of Visual Explanations
Benjamin Vandersmissen
José Oramas
XAI
FAtt
34
3
0
14 Feb 2023
Variational Information Pursuit for Interpretable Predictions
Aditya Chattopadhyay
Kwan Ho Ryan Chan
B. Haeffele
D. Geman
René Vidal
DRL
21
10
0
06 Feb 2023
Tracr: Compiled Transformers as a Laboratory for Interpretability
David Lindner
János Kramár
Sebastian Farquhar
Matthew Rahtz
Tom McGrath
Vladimir Mikulik
27
72
0
12 Jan 2023
Benchmarking Heterogeneous Treatment Effect Models through the Lens of Interpretability
Jonathan Crabbé
Alicia Curth
Ioana Bica
M. Schaar
CML
22
16
0
16 Jun 2022
B-cos Networks: Alignment is All We Need for Interpretability
Moritz D Boehle
Mario Fritz
Bernt Schiele
39
84
0
20 May 2022
Clinical outcome prediction under hypothetical interventions -- a representation learning framework for counterfactual reasoning
Yikuan Li
M. Mamouei
Shishir Rao
A. Hassaine
D. Canoy
Thomas Lukasiewicz
K. Rahimi
G. Salimi-Khorshidi
OOD
CML
AI4CE
28
1
0
15 May 2022
Do Users Benefit From Interpretable Vision? A User Study, Baseline, And Dataset
Leon Sixt
M. Schuessler
Oana-Iuliana Popescu
Philipp Weiß
Tim Landgraf
FAtt
26
14
0
25 Apr 2022
Human-Centered Concept Explanations for Neural Networks
Chih-Kuan Yeh
Been Kim
Pradeep Ravikumar
FAtt
34
25
0
25 Feb 2022
Evaluating Feature Attribution Methods in the Image Domain
Arne Gevaert
Axel-Jan Rousseau
Thijs Becker
D. Valkenborg
T. D. Bie
Yvan Saeys
FAtt
21
22
0
22 Feb 2022
Explainable Artificial Intelligence Methods in Combating Pandemics: A Systematic Review
F. Giuste
Wenqi Shi
Yuanda Zhu
Tarun Naren
Monica Isgut
Ying Sha
L. Tong
Mitali S. Gupte
May D. Wang
21
73
0
23 Dec 2021
Evaluating saliency methods on artificial data with different background types
Céline Budding
Fabian Eitel
K. Ritter
Stefan Haufe
XAI
FAtt
MedIm
24
5
0
09 Dec 2021
HIVE: Evaluating the Human Interpretability of Visual Explanations
Sunnie S. Y. Kim
Nicole Meister
V. V. Ramaswamy
Ruth C. Fong
Olga Russakovsky
66
114
0
06 Dec 2021
Self-Interpretable Model with TransformationEquivariant Interpretation
Yipei Wang
Xiaoqian Wang
38
23
0
09 Nov 2021
A Survey on the Robustness of Feature Importance and Counterfactual Explanations
Saumitra Mishra
Sanghamitra Dutta
Jason Long
Daniele Magazzeni
AAML
14
58
0
30 Oct 2021
Longitudinal Distance: Towards Accountable Instance Attribution
Rosina O. Weber
Prateek Goel
S. Amiri
G. Simpson
16
0
0
23 Aug 2021
Synthetic Benchmarks for Scientific Research in Explainable Machine Learning
Yang Liu
Sujay Khandagale
Colin White
W. Neiswanger
37
65
0
23 Jun 2021
Do Feature Attribution Methods Correctly Attribute Features?
Yilun Zhou
Serena Booth
Marco Tulio Ribeiro
J. Shah
FAtt
XAI
24
132
0
27 Apr 2021
Improving Attribution Methods by Learning Submodular Functions
Piyushi Manupriya
Tarun Ram Menta
S. Jagarlapudi
V. Balasubramanian
TDI
22
6
0
19 Apr 2021
Do Input Gradients Highlight Discriminative Features?
Harshay Shah
Prateek Jain
Praneeth Netrapalli
AAML
FAtt
21
57
0
25 Feb 2021
Captum: A unified and generic model interpretability library for PyTorch
Narine Kokhlikyan
Vivek Miglani
Miguel Martin
Edward Wang
B. Alsallakh
...
Alexander Melnikov
Natalia Kliushkina
Carlos Araya
Siqi Yan
Orion Reblitz-Richardson
FAtt
29
821
0
16 Sep 2020
Evaluating and Aggregating Feature-based Model Explanations
Umang Bhatt
Adrian Weller
J. M. F. Moura
XAI
33
218
0
01 May 2020
Measuring and improving the quality of visual explanations
Agnieszka Grabska-Barwiñska
XAI
FAtt
14
3
0
14 Mar 2020
On Completeness-aware Concept-Based Explanations in Deep Neural Networks
Chih-Kuan Yeh
Been Kim
Sercan Ö. Arik
Chun-Liang Li
Tomas Pfister
Pradeep Ravikumar
FAtt
122
297
0
17 Oct 2019
Explaining Anomalies Detected by Autoencoders Using SHAP
Liat Antwarg
Ronnie Mindlin Miller
Bracha Shapira
Lior Rokach
FAtt
TDI
11
86
0
06 Mar 2019
1