Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1907.10882
Cited By
Interpretability Beyond Classification Output: Semantic Bottleneck Networks
25 July 2019
M. Losch
Mario Fritz
Bernt Schiele
UQCV
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Interpretability Beyond Classification Output: Semantic Bottleneck Networks"
19 / 19 papers shown
Title
Show and Tell: Visually Explainable Deep Neural Nets via Spatially-Aware Concept Bottleneck Models
Itay Benou
Tammy Riklin-Raviv
67
0
0
27 Feb 2025
COMIX: Compositional Explanations using Prototypes
S. Sivaprasad
D. Kangin
Plamen Angelov
Mario Fritz
136
0
0
10 Jan 2025
Image-guided topic modeling for interpretable privacy classification
Alina Elena Baia
Andrea Cavallaro
37
0
0
27 Sep 2024
Multi-Scale Grouped Prototypes for Interpretable Semantic Segmentation
Hugo Porta
Emanuele Dalsasso
Diego Marcos
D. Tuia
93
0
0
14 Sep 2024
DEPICT: Diffusion-Enabled Permutation Importance for Image Classification Tasks
Sarah Jabbour
Gregory Kondas
Ella Kazerooni
Michael Sjoding
David Fouhey
Jenna Wiens
FAtt
DiffM
47
1
0
19 Jul 2024
Understanding Multimodal Deep Neural Networks: A Concept Selection View
Chenming Shang
Hengyuan Zhang
Hao Wen
Yujiu Yang
43
5
0
13 Apr 2024
Sparse Concept Bottleneck Models: Gumbel Tricks in Contrastive Learning
Andrei Semenov
Vladimir Ivanov
Aleksandr Beznosikov
Alexander Gasnikov
29
6
0
04 Apr 2024
Interpreting Pretrained Language Models via Concept Bottlenecks
Zhen Tan
Lu Cheng
Song Wang
Yuan Bo
Jundong Li
Huan Liu
LRM
29
20
0
08 Nov 2023
Hierarchical Explanations for Video Action Recognition
Sadaf Gulshad
Teng Long
N. V. Noord
FAtt
18
6
0
01 Jan 2023
Concept Embedding Analysis: A Review
Gesina Schwalbe
19
28
0
25 Mar 2022
Editing a classifier by rewriting its prediction rules
Shibani Santurkar
Dimitris Tsipras
Mahalaxmi Elango
David Bau
Antonio Torralba
A. Madry
KELM
175
89
0
02 Dec 2021
Image Classification with Consistent Supporting Evidence
Peiqi Wang
Ruizhi Liao
Daniel Moyer
Seth Berkowitz
Steven Horng
Polina Golland
34
2
0
13 Nov 2021
Toward a Unified Framework for Debugging Concept-based Models
A. Bontempelli
Fausto Giunchiglia
Andrea Passerini
Stefano Teso
18
4
0
23 Sep 2021
Promises and Pitfalls of Black-Box Concept Learning Models
Anita Mahinpei
Justin Clark
Isaac Lage
Finale Doshi-Velez
Weiwei Pan
31
91
0
24 Jun 2021
A Comprehensive Taxonomy for Explainable Artificial Intelligence: A Systematic Survey of Surveys on Methods and Concepts
Gesina Schwalbe
Bettina Finzel
XAI
21
184
0
15 May 2021
Towards a Collective Agenda on AI for Earth Science Data Analysis
D. Tuia
R. Roscher
Jan Dirk Wegner
Nathan Jacobs
Xiaoxiang Zhu
Gustau Camps-Valls
AI4CE
39
68
0
11 Apr 2021
Interpretable Machine Learning: Fundamental Principles and 10 Grand Challenges
Cynthia Rudin
Chaofan Chen
Zhi Chen
Haiyang Huang
Lesia Semenova
Chudi Zhong
FaML
AI4CE
LRM
53
651
0
20 Mar 2021
Debiasing Concept-based Explanations with Causal Analysis
M. T. Bahadori
David Heckerman
FAtt
CML
6
38
0
22 Jul 2020
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
281
5,833
0
08 Jul 2016
1