ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1907.10905
  4. Cited By
A Group-Theoretic Framework for Data Augmentation
v1v2v3v4 (latest)

A Group-Theoretic Framework for Data Augmentation

25 July 2019
Shuxiao Chen
Edgar Dobriban
Jane Lee
    FedML
ArXiv (abs)PDFHTML

Papers citing "A Group-Theoretic Framework for Data Augmentation"

19 / 19 papers shown
Tilt your Head: Activating the Hidden Spatial-Invariance of Classifiers
Tilt your Head: Activating the Hidden Spatial-Invariance of ClassifiersInternational Conference on Machine Learning (ICML), 2024
Johann Schmidt
Sebastian Stober
297
4
0
06 May 2024
Quantifying the Variability Collapse of Neural Networks
Quantifying the Variability Collapse of Neural NetworksInternational Conference on Machine Learning (ICML), 2023
Jing-Xue Xu
Haoxiong Liu
251
8
0
06 Jun 2023
Unproportional mosaicing
Unproportional mosaicing
Vojtech Molek
P. Hurtík
Pavel Vlasánek
D. Adamczyk
233
1
0
03 Mar 2023
Data-Efficient Augmentation for Training Neural Networks
Data-Efficient Augmentation for Training Neural NetworksNeural Information Processing Systems (NeurIPS), 2022
Tian Yu Liu
Baharan Mirzasoleiman
229
8
0
15 Oct 2022
In What Ways Are Deep Neural Networks Invariant and How Should We
  Measure This?
In What Ways Are Deep Neural Networks Invariant and How Should We Measure This?Neural Information Processing Systems (NeurIPS), 2022
Henry Kvinge
Tegan H. Emerson
Grayson Jorgenson
Scott Vasquez
T. Doster
Jesse D. Lew
197
12
0
07 Oct 2022
Learning Continuous Rotation Canonicalization with Radial Beam Sampling
Learning Continuous Rotation Canonicalization with Radial Beam Sampling
J. Schmidt
Sebastian Stober
236
4
0
21 Jun 2022
Learning Instance-Specific Augmentations by Capturing Local Invariances
Learning Instance-Specific Augmentations by Capturing Local InvariancesInternational Conference on Machine Learning (ICML), 2022
Ning Miao
Tom Rainforth
Emile Mathieu
Yann Dubois
Yee Whye Teh
Adam Foster
Hyunjik Kim
467
14
0
31 May 2022
Reconstruction for Powerful Graph Representations
Reconstruction for Powerful Graph Representations
Leonardo Cotta
Christopher Morris
Bruno Ribeiro
AI4CE
487
90
0
01 Oct 2021
Model-Based Domain Generalization
Model-Based Domain GeneralizationNeural Information Processing Systems (NeurIPS), 2021
Avi Schwarzschild
George J. Pappas
Hamed Hassani
OOD
364
148
0
23 Feb 2021
Data augmentation and image understanding
Data augmentation and image understanding
Alex Hernandez-Garcia
158
6
0
28 Dec 2020
How Data Augmentation affects Optimization for Linear Regression
How Data Augmentation affects Optimization for Linear Regression
Boris Hanin
Yi Sun
213
19
0
21 Oct 2020
Improving Transformation Invariance in Contrastive Representation
  Learning
Improving Transformation Invariance in Contrastive Representation LearningInternational Conference on Learning Representations (ICLR), 2020
Adam Foster
Rattana Pukdee
Tom Rainforth
251
25
0
19 Oct 2020
WeMix: How to Better Utilize Data Augmentation
WeMix: How to Better Utilize Data Augmentation
Yi Tian Xu
Asaf Noy
Ming Lin
Qi Qian
Hao Li
Rong Jin
172
18
0
03 Oct 2020
On the Generalization Effects of Linear Transformations in Data
  Augmentation
On the Generalization Effects of Linear Transformations in Data AugmentationInternational Conference on Machine Learning (ICML), 2020
Sen Wu
Hongyang R. Zhang
Gregory Valiant
Christopher Ré
294
87
0
02 May 2020
On the Benefits of Invariance in Neural Networks
On the Benefits of Invariance in Neural Networks
Clare Lyle
Mark van der Wilk
Marta Z. Kwiatkowska
Y. Gal
Benjamin Bloem-Reddy
OODBDL
285
99
0
01 May 2020
Implicit Regularization and Convergence for Weight Normalization
Implicit Regularization and Convergence for Weight NormalizationNeural Information Processing Systems (NeurIPS), 2019
Xiaoxia Wu
Guang Cheng
Zhaolin Ren
Shanshan Wu
Zhiyuan Li
Suriya Gunasekar
Rachel A. Ward
Qiang Liu
486
26
0
18 Nov 2019
Enhanced Convolutional Neural Tangent Kernels
Enhanced Convolutional Neural Tangent Kernels
Zhiyuan Li
Ruosong Wang
Dingli Yu
S. Du
Wei Hu
Ruslan Salakhutdinov
Sanjeev Arora
196
136
0
03 Nov 2019
Implicit Rugosity Regularization via Data Augmentation
Implicit Rugosity Regularization via Data Augmentation
Daniel LeJeune
Randall Balestriero
Hamid Javadi
Richard G. Baraniuk
210
4
0
28 May 2019
Data augmentation instead of explicit regularization
Data augmentation instead of explicit regularization
Alex Hernández-García
Peter König
241
158
0
11 Jun 2018
1