ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1907.12998
  4. Cited By
Approximation Capabilities of Neural ODEs and Invertible Residual
  Networks

Approximation Capabilities of Neural ODEs and Invertible Residual Networks

30 July 2019
Han Zhang
Xi Gao
Jacob Unterman
Tom Arodz
ArXivPDFHTML

Papers citing "Approximation Capabilities of Neural ODEs and Invertible Residual Networks"

18 / 18 papers shown
Title
When are dynamical systems learned from time series data statistically
  accurate?
When are dynamical systems learned from time series data statistically accurate?
Jeongjin Park
Nicole Yang
Nisha Chandramoorthy
AI4TS
36
4
0
09 Nov 2024
Feedback Favors the Generalization of Neural ODEs
Feedback Favors the Generalization of Neural ODEs
Jindou Jia
Zihan Yang
Meng Wang
Kexin Guo
Jianfei Yang
Xiang Yu
Lei Guo
OOD
AI4CE
43
2
0
14 Oct 2024
On the Generalization and Approximation Capacities of Neural Controlled
  Differential Equations
On the Generalization and Approximation Capacities of Neural Controlled Differential Equations
Linus Bleistein
Agathe Guilloux
40
1
0
26 May 2023
Do We Need an Encoder-Decoder to Model Dynamical Systems on Networks?
Do We Need an Encoder-Decoder to Model Dynamical Systems on Networks?
Bing-Quan Liu
Wei Luo
Gang Li
Jing Huang
Boxiong Yang
AI4CE
20
5
0
20 May 2023
Universal Approximation Property of Hamiltonian Deep Neural Networks
Universal Approximation Property of Hamiltonian Deep Neural Networks
M. Zakwan
M. d’Angelo
Giancarlo Ferrari-Trecate
36
5
0
21 Mar 2023
Selected aspects of complex, hypercomplex and fuzzy neural networks
Selected aspects of complex, hypercomplex and fuzzy neural networks
A. Niemczynowicz
R. Kycia
Maciej Jaworski
A. Siemaszko
J. Calabuig
...
Baruch Schneider
Diana Berseghyan
Irina Perfiljeva
V. Novák
Piotr Artiemjew
24
0
0
29 Dec 2022
Whitening Convergence Rate of Coupling-based Normalizing Flows
Whitening Convergence Rate of Coupling-based Normalizing Flows
Felix Dräxler
Christoph Schnörr
Ullrich Kothe
36
7
0
25 Oct 2022
Dynamical systems' based neural networks
Dynamical systems' based neural networks
E. Celledoni
Davide Murari
B. Owren
Carola-Bibiane Schönlieb
Ferdia Sherry
OOD
43
10
0
05 Oct 2022
Continuous-Time Modeling of Counterfactual Outcomes Using Neural
  Controlled Differential Equations
Continuous-Time Modeling of Counterfactual Outcomes Using Neural Controlled Differential Equations
Nabeel Seedat
F. Imrie
Alexis Bellot
Zhaozhi Qian
M. Schaar
OOD
CML
31
52
0
16 Jun 2022
Characteristic Neural Ordinary Differential Equations
Characteristic Neural Ordinary Differential Equations
Xingzi Xu
Ali Hasan
Khalil Elkhalil
Jie Ding
Vahid Tarokh
BDL
29
3
0
25 Nov 2021
Neural Flows: Efficient Alternative to Neural ODEs
Neural Flows: Efficient Alternative to Neural ODEs
Marin Bilovs
Johanna Sommer
Syama Sundar Rangapuram
Tim Januschowski
Stephan Günnemann
AI4TS
18
70
0
25 Oct 2021
Approximation capabilities of measure-preserving neural networks
Approximation capabilities of measure-preserving neural networks
Aiqing Zhu
Pengzhan Jin
Yifa Tang
21
8
0
21 Jun 2021
A Deep Learning approach to Reduced Order Modelling of Parameter
  Dependent Partial Differential Equations
A Deep Learning approach to Reduced Order Modelling of Parameter Dependent Partial Differential Equations
N. R. Franco
Andrea Manzoni
P. Zunino
26
45
0
10 Mar 2021
Momentum Residual Neural Networks
Momentum Residual Neural Networks
Michael E. Sander
Pierre Ablin
Mathieu Blondel
Gabriel Peyré
24
56
0
15 Feb 2021
Jacobian Determinant of Normalizing Flows
Jacobian Determinant of Normalizing Flows
Huadong Liao
Jiawei He
DRL
13
7
0
12 Feb 2021
"Hey, that's not an ODE": Faster ODE Adjoints via Seminorms
"Hey, that's not an ODE": Faster ODE Adjoints via Seminorms
Patrick Kidger
Ricky T. Q. Chen
Terry Lyons
24
39
0
20 Sep 2020
STEER: Simple Temporal Regularization For Neural ODEs
STEER: Simple Temporal Regularization For Neural ODEs
Arna Ghosh
Harkirat Singh Behl
Emilien Dupont
Philip H. S. Torr
Vinay P. Namboodiri
BDL
AI4TS
27
74
0
18 Jun 2020
Deep Learning via Dynamical Systems: An Approximation Perspective
Deep Learning via Dynamical Systems: An Approximation Perspective
Qianxiao Li
Ting Lin
Zuowei Shen
AI4TS
AI4CE
16
107
0
22 Dec 2019
1