ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1908.00967
  4. Cited By
Learning to Train with Synthetic Humans

Learning to Train with Synthetic Humans

2 August 2019
David T. Hoffmann
Dimitrios Tzionas
M. Black
Siyu Tang
ArXivPDFHTML

Papers citing "Learning to Train with Synthetic Humans"

7 / 7 papers shown
Title
Human Pose Estimation in Monocular Omnidirectional Top-View Images
Human Pose Estimation in Monocular Omnidirectional Top-View Images
Jingrui Yu
Tobias Scheck
Roman Seidel
Yukti Adya
Dipankar Nandi
G. Hirtz
30
3
0
17 Apr 2023
Global Adaptation meets Local Generalization: Unsupervised Domain
  Adaptation for 3D Human Pose Estimation
Global Adaptation meets Local Generalization: Unsupervised Domain Adaptation for 3D Human Pose Estimation
Wenhao Chai
Zhongyu Jiang
Jenq-Neng Hwang
Gaoang Wang
3DH
22
22
0
29 Mar 2023
3D Segmentation of Humans in Point Clouds with Synthetic Data
3D Segmentation of Humans in Point Clouds with Synthetic Data
Ayca Takmaz
Jonas Schult
Irem Kaftan
Mertcan Akccay
Bastian Leibe
R. Sumner
Francis Engelmann
Siyu Tang
3DH
14
23
0
01 Dec 2022
Synthetic Data in Human Analysis: A Survey
Synthetic Data in Human Analysis: A Survey
Indu Joshi
Marcel Grimmer
Christian Rathgeb
Christoph Busch
F. Brémond
A. Dantcheva
20
46
0
19 Aug 2022
UnrealEgo: A New Dataset for Robust Egocentric 3D Human Motion Capture
UnrealEgo: A New Dataset for Robust Egocentric 3D Human Motion Capture
Hiroyasu Akada
Jian Wang
Soshi Shimada
Masaki Takahashi
Christian Theobalt
Vladislav Golyanik
EgoV
41
44
0
02 Aug 2022
AdaFuse: Adaptive Multiview Fusion for Accurate Human Pose Estimation in
  the Wild
AdaFuse: Adaptive Multiview Fusion for Accurate Human Pose Estimation in the Wild
Zhe Zhang
Chunyu Wang
Weichao Qiu
Wenhu Qin
Wenjun Zeng
3DH
19
87
0
26 Oct 2020
From Real to Synthetic and Back: Synthesizing Training Data for
  Multi-Person Scene Understanding
From Real to Synthetic and Back: Synthesizing Training Data for Multi-Person Scene Understanding
Igor Kviatkovsky
Nadav Bhonker
Gérard Medioni
28
3
0
03 Jun 2020
1