ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1908.02507
  4. Cited By
Mesh Variational Autoencoders with Edge Contraction Pooling

Mesh Variational Autoencoders with Edge Contraction Pooling

7 August 2019
Yu-Jie Yuan
Yu-Kun Lai
J. Yang
Hongbo Fu
Lin Gao
    3DPC
ArXivPDFHTML

Papers citing "Mesh Variational Autoencoders with Edge Contraction Pooling"

6 / 6 papers shown
Title
Deep Structural Causal Shape Models
Deep Structural Causal Shape Models
Rajat Rasal
Daniel Coelho De Castro
Nick Pawlowski
Ben Glocker
3DV
MedIm
28
12
0
23 Aug 2022
Mesh Convolutional Autoencoder for Semi-Regular Meshes of Different
  Sizes
Mesh Convolutional Autoencoder for Semi-Regular Meshes of Different Sizes
Sara Hahner
Jochen Garcke
AI4CE
14
14
0
18 Oct 2021
Learning Feature Aggregation for Deep 3D Morphable Models
Learning Feature Aggregation for Deep 3D Morphable Models
Zhixiang Chen
Tae-Kyun Kim
3DPC
3DH
37
24
0
05 May 2021
A Survey on Deep Geometry Learning: From a Representation Perspective
A Survey on Deep Geometry Learning: From a Representation Perspective
Yun-Peng Xiao
Yu-Kun Lai
Fang-Lue Zhang
Chunpeng Li
Lin Gao
3DH
AI4TS
32
99
0
19 Feb 2020
Geometric deep learning: going beyond Euclidean data
Geometric deep learning: going beyond Euclidean data
M. Bronstein
Joan Bruna
Yann LeCun
Arthur Szlam
P. Vandergheynst
GNN
238
3,234
0
24 Nov 2016
Learning a Probabilistic Latent Space of Object Shapes via 3D
  Generative-Adversarial Modeling
Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling
Jiajun Wu
Chengkai Zhang
Tianfan Xue
Bill Freeman
J. Tenenbaum
GAN
166
1,940
0
24 Oct 2016
1