ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1908.03491
  4. Cited By
Bayesian Inference for Large Scale Image Classification

Bayesian Inference for Large Scale Image Classification

9 August 2019
Jonathan Heek
Nal Kalchbrenner
    UQCVBDL
ArXiv (abs)PDFHTML

Papers citing "Bayesian Inference for Large Scale Image Classification"

20 / 20 papers shown
Title
Addressing the Inconsistency in Bayesian Deep Learning via Generalized Laplace Approximation
Addressing the Inconsistency in Bayesian Deep Learning via Generalized Laplace Approximation
Yinsong Chen
Samson S. Yu
Zhong Li
Chee Peng Lim
BDL
78
0
0
01 Jul 2025
Piecewise Deterministic Markov Processes for Bayesian Neural Networks
Piecewise Deterministic Markov Processes for Bayesian Neural Networks
Ethan Goan
Dimitri Perrin
Kerrie Mengersen
Clinton Fookes
67
0
0
17 Feb 2023
Scalable Bayesian Uncertainty Quantification for Neural Network
  Potentials: Promise and Pitfalls
Scalable Bayesian Uncertainty Quantification for Neural Network Potentials: Promise and Pitfalls
Stephan Thaler
Gregor Doehner
Julija Zavadlav
101
21
0
15 Dec 2022
On the optimization and pruning for Bayesian deep learning
On the optimization and pruning for Bayesian deep learning
X. Ke
Yanan Fan
BDLUQCV
75
1
0
24 Oct 2022
Low-Precision Stochastic Gradient Langevin Dynamics
Low-Precision Stochastic Gradient Langevin Dynamics
Ruqi Zhang
A. Wilson
Chris De Sa
BDL
63
14
0
20 Jun 2022
A deep mixture density network for outlier-corrected interpolation of
  crowd-sourced weather data
A deep mixture density network for outlier-corrected interpolation of crowd-sourced weather data
Charlie Kirkwood
T. Economou
H. Odbert
N. Pugeault
47
0
0
25 Jan 2022
Structured Stochastic Gradient MCMC
Structured Stochastic Gradient MCMC
Antonios Alexos
Alex Boyd
Stephan Mandt
BDL
73
13
0
19 Jul 2021
Quantifying Uncertainty in Deep Spatiotemporal Forecasting
Quantifying Uncertainty in Deep Spatiotemporal Forecasting
Dongxian Wu
Liyao (Mars) Gao
X. Xiong
Matteo Chinazzi
Alessandro Vespignani
Yi-An Ma
Rose Yu
AI4TS
92
71
0
25 May 2021
Sampling-free Variational Inference for Neural Networks with
  Multiplicative Activation Noise
Sampling-free Variational Inference for Neural Networks with Multiplicative Activation Noise
Jannik Schmitt
Stefan Roth
UQCV
45
6
0
15 Mar 2021
The Promises and Pitfalls of Deep Kernel Learning
The Promises and Pitfalls of Deep Kernel Learning
Sebastian W. Ober
C. Rasmussen
Mark van der Wilk
UQCVBDL
82
109
0
24 Feb 2021
DeepGLEAM: A hybrid mechanistic and deep learning model for COVID-19
  forecasting
DeepGLEAM: A hybrid mechanistic and deep learning model for COVID-19 forecasting
Dongxian Wu
Liyao (Mars) Gao
X. Xiong
Matteo Chinazzi
Alessandro Vespignani
Yi-An Ma
Rose Yu
FedML
75
27
0
12 Feb 2021
Bayesian Neural Network Priors Revisited
Bayesian Neural Network Priors Revisited
Vincent Fortuin
Adrià Garriga-Alonso
Sebastian W. Ober
F. Wenzel
Gunnar Rätsch
Richard Turner
Mark van der Wilk
Laurence Aitchison
BDLUQCV
133
141
0
12 Feb 2021
All You Need is a Good Functional Prior for Bayesian Deep Learning
All You Need is a Good Functional Prior for Bayesian Deep Learning
Ba-Hien Tran
Simone Rossi
Dimitrios Milios
Maurizio Filippone
OODBDL
73
61
0
25 Nov 2020
Scaling Hamiltonian Monte Carlo Inference for Bayesian Neural Networks
  with Symmetric Splitting
Scaling Hamiltonian Monte Carlo Inference for Bayesian Neural Networks with Symmetric Splitting
Adam D. Cobb
Brian Jalaian
BDL
86
76
0
14 Oct 2020
Predictive Complexity Priors
Predictive Complexity Priors
Eric T. Nalisnick
Jonathan Gordon
José Miguel Hernández-Lobato
BDLUQCV
106
19
0
18 Jun 2020
Efficient and Scalable Bayesian Neural Nets with Rank-1 Factors
Efficient and Scalable Bayesian Neural Nets with Rank-1 Factors
Michael W. Dusenberry
Ghassen Jerfel
Yeming Wen
Yi-An Ma
Jasper Snoek
Katherine A. Heller
Balaji Lakshminarayanan
Dustin Tran
UQCVBDL
86
215
0
14 May 2020
Being Bayesian about Categorical Probability
Being Bayesian about Categorical Probability
Taejong Joo
U. Chung
Minji Seo
UQCVBDL
95
61
0
19 Feb 2020
Pitfalls of In-Domain Uncertainty Estimation and Ensembling in Deep
  Learning
Pitfalls of In-Domain Uncertainty Estimation and Ensembling in Deep Learning
Arsenii Ashukha
Alexander Lyzhov
Dmitry Molchanov
Dmitry Vetrov
UQCVFedML
105
320
0
15 Feb 2020
The reproducing Stein kernel approach for post-hoc corrected sampling
The reproducing Stein kernel approach for post-hoc corrected sampling
Liam Hodgkinson
R. Salomone
Fred Roosta
72
27
0
25 Jan 2020
Distance-Based Learning from Errors for Confidence Calibration
Distance-Based Learning from Errors for Confidence Calibration
Chen Xing
Sercan O. Arik
Zizhao Zhang
Tomas Pfister
FedML
71
39
0
03 Dec 2019
1