Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1908.03491
Cited By
Bayesian Inference for Large Scale Image Classification
9 August 2019
Jonathan Heek
Nal Kalchbrenner
UQCV
BDL
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Bayesian Inference for Large Scale Image Classification"
20 / 20 papers shown
Title
Addressing the Inconsistency in Bayesian Deep Learning via Generalized Laplace Approximation
Yinsong Chen
Samson S. Yu
Zhong Li
Chee Peng Lim
BDL
78
0
0
01 Jul 2025
Piecewise Deterministic Markov Processes for Bayesian Neural Networks
Ethan Goan
Dimitri Perrin
Kerrie Mengersen
Clinton Fookes
67
0
0
17 Feb 2023
Scalable Bayesian Uncertainty Quantification for Neural Network Potentials: Promise and Pitfalls
Stephan Thaler
Gregor Doehner
Julija Zavadlav
101
21
0
15 Dec 2022
On the optimization and pruning for Bayesian deep learning
X. Ke
Yanan Fan
BDL
UQCV
75
1
0
24 Oct 2022
Low-Precision Stochastic Gradient Langevin Dynamics
Ruqi Zhang
A. Wilson
Chris De Sa
BDL
63
14
0
20 Jun 2022
A deep mixture density network for outlier-corrected interpolation of crowd-sourced weather data
Charlie Kirkwood
T. Economou
H. Odbert
N. Pugeault
47
0
0
25 Jan 2022
Structured Stochastic Gradient MCMC
Antonios Alexos
Alex Boyd
Stephan Mandt
BDL
73
13
0
19 Jul 2021
Quantifying Uncertainty in Deep Spatiotemporal Forecasting
Dongxian Wu
Liyao (Mars) Gao
X. Xiong
Matteo Chinazzi
Alessandro Vespignani
Yi-An Ma
Rose Yu
AI4TS
92
71
0
25 May 2021
Sampling-free Variational Inference for Neural Networks with Multiplicative Activation Noise
Jannik Schmitt
Stefan Roth
UQCV
45
6
0
15 Mar 2021
The Promises and Pitfalls of Deep Kernel Learning
Sebastian W. Ober
C. Rasmussen
Mark van der Wilk
UQCV
BDL
82
109
0
24 Feb 2021
DeepGLEAM: A hybrid mechanistic and deep learning model for COVID-19 forecasting
Dongxian Wu
Liyao (Mars) Gao
X. Xiong
Matteo Chinazzi
Alessandro Vespignani
Yi-An Ma
Rose Yu
FedML
75
27
0
12 Feb 2021
Bayesian Neural Network Priors Revisited
Vincent Fortuin
Adrià Garriga-Alonso
Sebastian W. Ober
F. Wenzel
Gunnar Rätsch
Richard Turner
Mark van der Wilk
Laurence Aitchison
BDL
UQCV
133
141
0
12 Feb 2021
All You Need is a Good Functional Prior for Bayesian Deep Learning
Ba-Hien Tran
Simone Rossi
Dimitrios Milios
Maurizio Filippone
OOD
BDL
73
61
0
25 Nov 2020
Scaling Hamiltonian Monte Carlo Inference for Bayesian Neural Networks with Symmetric Splitting
Adam D. Cobb
Brian Jalaian
BDL
86
76
0
14 Oct 2020
Predictive Complexity Priors
Eric T. Nalisnick
Jonathan Gordon
José Miguel Hernández-Lobato
BDL
UQCV
106
19
0
18 Jun 2020
Efficient and Scalable Bayesian Neural Nets with Rank-1 Factors
Michael W. Dusenberry
Ghassen Jerfel
Yeming Wen
Yi-An Ma
Jasper Snoek
Katherine A. Heller
Balaji Lakshminarayanan
Dustin Tran
UQCV
BDL
86
215
0
14 May 2020
Being Bayesian about Categorical Probability
Taejong Joo
U. Chung
Minji Seo
UQCV
BDL
95
61
0
19 Feb 2020
Pitfalls of In-Domain Uncertainty Estimation and Ensembling in Deep Learning
Arsenii Ashukha
Alexander Lyzhov
Dmitry Molchanov
Dmitry Vetrov
UQCV
FedML
105
320
0
15 Feb 2020
The reproducing Stein kernel approach for post-hoc corrected sampling
Liam Hodgkinson
R. Salomone
Fred Roosta
72
27
0
25 Jan 2020
Distance-Based Learning from Errors for Confidence Calibration
Chen Xing
Sercan O. Arik
Zizhao Zhang
Tomas Pfister
FedML
71
39
0
03 Dec 2019
1