Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1908.05254
Cited By
Optimizing for Interpretability in Deep Neural Networks with Tree Regularization
14 August 2019
Mike Wu
S. Parbhoo
M. C. Hughes
Volker Roth
Finale Doshi-Velez
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Optimizing for Interpretability in Deep Neural Networks with Tree Regularization"
8 / 8 papers shown
Title
Smooth InfoMax -- Towards easier Post-Hoc interpretability
Fabian Denoodt
Bart de Boer
José Oramas
21
2
0
23 Aug 2024
3VL: Using Trees to Improve Vision-Language Models' Interpretability
Nir Yellinek
Leonid Karlinsky
Raja Giryes
CoGe
VLM
54
4
0
28 Dec 2023
Variational Information Pursuit for Interpretable Predictions
Aditya Chattopadhyay
Kwan Ho Ryan Chan
B. Haeffele
D. Geman
René Vidal
DRL
29
11
0
06 Feb 2023
SpArX: Sparse Argumentative Explanations for Neural Networks [Technical Report]
Hamed Ayoobi
Nico Potyka
Francesca Toni
26
18
0
23 Jan 2023
Interpretable Deep Tracking
Benjamin Thérien
Krzysztof Czarnecki
36
0
0
03 Oct 2022
A Survey of Neural Trees
Haoling Li
Mingli Song
Mengqi Xue
Haofei Zhang
Jingwen Ye
Lechao Cheng
Mingli Song
AI4CE
25
6
0
07 Sep 2022
On Explaining Decision Trees
Yacine Izza
Alexey Ignatiev
Sasha Rubin
FAtt
24
85
0
21 Oct 2020
Methods for Interpreting and Understanding Deep Neural Networks
G. Montavon
Wojciech Samek
K. Müller
FaML
234
2,238
0
24 Jun 2017
1