Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1908.08729
Cited By
Wasserstein Distributionally Robust Optimization: Theory and Applications in Machine Learning
23 August 2019
Daniel Kuhn
Peyman Mohajerin Esfahani
Viet Anh Nguyen
Soroosh Shafieezadeh-Abadeh
OOD
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Wasserstein Distributionally Robust Optimization: Theory and Applications in Machine Learning"
47 / 47 papers shown
Title
Wasserstein Distributionally Robust Regret Optimization
Lukas-Benedikt Fiechtner
Jose Blanchet
27
0
0
15 Apr 2025
Achievable distributional robustness when the robust risk is only partially identified
Julia Kostin
Nicola Gnecco
Fanny Yang
73
3
0
04 Feb 2025
Universal generalization guarantees for Wasserstein distributionally robust models
Tam Le
Jérome Malick
OOD
53
2
0
28 Jan 2025
New Perspectives on Regularization and Computation in Optimal Transport-Based Distributionally Robust Optimization
Soroosh Shafieezadeh-Abadeh
Liviu Aolaritei
Florian Dorfler
Daniel Kuhn
58
20
0
31 Dec 2024
Unsupervised Training of Convex Regularizers using Maximum Likelihood Estimation
Hongwei Tan
Ziruo Cai
Marcelo Pereyra
Subhadip Mukherjee
Junqi Tang
Carola-Bibiane Schönlieb
SSL
70
1
0
08 Apr 2024
Conformal Predictive Programming for Chance Constrained Optimization
Yiqi Zhao
Xinyi Yu
Matteo Sesia
Lars Lindemann
Lars Lindemann
42
3
0
12 Feb 2024
Algorithms for mean-field variational inference via polyhedral optimization in the Wasserstein space
Yiheng Jiang
Sinho Chewi
Aram-Alexandre Pooladian
29
7
0
05 Dec 2023
Learning Optimal Classification Trees Robust to Distribution Shifts
Nathan Justin
S. Aghaei
Andrés Gómez
P. Vayanos
OOD
35
0
0
26 Oct 2023
Nonlinear Distributionally Robust Optimization
Mohammed Rayyan Sheriff
Peyman Mohajerin Esfahani
32
2
0
05 Jun 2023
Twice Regularized Markov Decision Processes: The Equivalence between Robustness and Regularization
E. Derman
Yevgeniy Men
M. Geist
Shie Mannor
39
1
0
12 Mar 2023
Diagnosing Model Performance Under Distribution Shift
Tiffany Cai
Hongseok Namkoong
Steve Yadlowsky
37
27
0
03 Mar 2023
Learning Against Distributional Uncertainty: On the Trade-off Between Robustness and Specificity
Shixiong Wang
Haowei Wang
Xinke Li
Jean Honorio
OOD
65
1
0
31 Jan 2023
On adversarial robustness and the use of Wasserstein ascent-descent dynamics to enforce it
Camilo A. Garcia Trillos
Nicolas García Trillos
16
5
0
09 Jan 2023
A Distributionally Robust Optimization Framework for Extreme Event Estimation
Yuanlu Bai
H. Lam
Xinyu Zhang
28
4
0
03 Jan 2023
Distributional Robustness Bounds Generalization Errors
Shixiong Wang
Haowei Wang
OOD
32
4
0
20 Dec 2022
Stochastic Optimization for Spectral Risk Measures
Ronak R. Mehta
Vincent Roulet
Krishna Pillutla
Lang Liu
Zaïd Harchaoui
32
6
0
10 Dec 2022
Path Planning Using Wassertein Distributionally Robust Deep Q-learning
Cem Alptürk
Venkatraman Renganathan
OOD
16
0
0
04 Nov 2022
Instance-Dependent Generalization Bounds via Optimal Transport
Songyan Hou
Parnian Kassraie
Anastasis Kratsios
Andreas Krause
Jonas Rothfuss
22
6
0
02 Nov 2022
Distributed Distributionally Robust Optimization with Non-Convex Objectives
Yang Jiao
Kai Yang
Dongjin Song
27
11
0
14 Oct 2022
An Optimal Transport Approach to Personalized Federated Learning
Farzan Farnia
Amirhossein Reisizadeh
Ramtin Pedarsani
Ali Jadbabaie
OT
OOD
FedML
31
12
0
06 Jun 2022
On the Generalization of Wasserstein Robust Federated Learning
Tung Nguyen
Tuan Dung Nguyen
Long Tan Le
Canh T. Dinh
N. H. Tran
OOD
FedML
21
6
0
03 Jun 2022
An improved central limit theorem and fast convergence rates for entropic transportation costs
E. del Barrio
Alberto González Sanz
Jean-Michel Loubes
Jonathan Niles-Weed
OT
34
32
0
19 Apr 2022
Expert-Calibrated Learning for Online Optimization with Switching Costs
Pengfei Li
Jianyi Yang
Shaolei Ren
24
11
0
18 Apr 2022
Global-Local Regularization Via Distributional Robustness
Hoang Phan
Trung Le
Trung-Nghia Phung
Tu Bui
Nhat Ho
Dinh Q. Phung
OOD
16
12
0
01 Mar 2022
A Unified Wasserstein Distributional Robustness Framework for Adversarial Training
Tu Bui
Trung Le
Quan Hung Tran
He Zhao
Dinh Q. Phung
AAML
OOD
31
42
0
27 Feb 2022
Distributionally Robust Fair Principal Components via Geodesic Descents
Hieu Vu
Toan M. Tran
Man-Chung Yue
Viet Anh Nguyen
11
14
0
07 Feb 2022
Rates of convergence for nonparametric estimation of singular distributions using generative adversarial networks
Minwoo Chae
GAN
32
4
0
07 Feb 2022
Counterfactual Plans under Distributional Ambiguity
N. Bui
D. Nguyen
Viet Anh Nguyen
62
24
0
29 Jan 2022
Human Imperceptible Attacks and Applications to Improve Fairness
Xinru Hua
Huanzhong Xu
Jose H. Blanchet
V. Nguyen
AAML
19
3
0
30 Nov 2021
Sinkhorn Distributionally Robust Optimization
Jie Wang
Rui Gao
Yao Xie
46
35
0
24 Sep 2021
On the regularized risk of distributionally robust learning over deep neural networks
Camilo A. Garcia Trillos
Nicolas García Trillos
OOD
37
10
0
13 Sep 2021
Distributionally Robust Learning
Ruidi Chen
I. Paschalidis
OOD
25
65
0
20 Aug 2021
Algorithmic Bias and Data Bias: Understanding the Relation between Distributionally Robust Optimization and Data Curation
Agnieszka Słowik
Léon Bottou
FaML
43
19
0
17 Jun 2021
Distributionally robust risk map for learning-based motion planning and control: A semidefinite programming approach
A. Hakobyan
Insoon Yang
104
25
0
03 May 2021
Unbalanced minibatch Optimal Transport; applications to Domain Adaptation
Kilian Fatras
Thibault Séjourné
Nicolas Courty
Rémi Flamary
OT
34
146
0
05 Mar 2021
Adversarially Robust Kernel Smoothing
Jia-Jie Zhu
Christina Kouridi
Yassine Nemmour
Bernhard Schölkopf
26
7
0
16 Feb 2021
First-order Optimization for Superquantile-based Supervised Learning
Yassine Laguel
J. Malick
Zaïd Harchaoui
12
9
0
30 Sep 2020
Distributionally Robust Losses for Latent Covariate Mixtures
John C. Duchi
Tatsunori Hashimoto
Hongseok Namkoong
13
79
0
28 Jul 2020
A Distributionally Robust Approach to Fair Classification
Bahar Taşkesen
Viet Anh Nguyen
Daniel Kuhn
Jose H. Blanchet
FaML
26
61
0
18 Jul 2020
A Stochastic Subgradient Method for Distributionally Robust Non-Convex Learning
Mert Gurbuzbalaban
A. Ruszczynski
Landi Zhu
20
9
0
08 Jun 2020
Distributionally Robust Weighted
k
k
k
-Nearest Neighbors
Shixiang Zhu
Liyan Xie
Minghe Zhang
Rui Gao
Yao Xie
OOD
21
7
0
07 Jun 2020
Adversarial Classification via Distributional Robustness with Wasserstein Ambiguity
Nam Ho-Nguyen
Stephen J. Wright
OOD
40
16
0
28 May 2020
On Linear Optimization over Wasserstein Balls
Man-Chung Yue
Daniel Kuhn
W. Wiesemann
9
50
0
15 Apr 2020
Posterior asymptotics in Wasserstein metrics on the real line
Minwoo Chae
P. De Blasi
S. Walker
8
6
0
12 Mar 2020
Geometric Dataset Distances via Optimal Transport
David Alvarez-Melis
Nicolò Fusi
OT
72
194
0
07 Feb 2020
Certifying Some Distributional Robustness with Principled Adversarial Training
Aman Sinha
Hongseok Namkoong
Riccardo Volpi
John C. Duchi
OOD
38
854
0
29 Oct 2017
Limit laws of the empirical Wasserstein distance: Gaussian distributions
Thomas Rippl
Axel Munk
A. Sturm
46
64
0
15 Jul 2015
1