ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1908.08729
  4. Cited By
Wasserstein Distributionally Robust Optimization: Theory and
  Applications in Machine Learning

Wasserstein Distributionally Robust Optimization: Theory and Applications in Machine Learning

23 August 2019
Daniel Kuhn
Peyman Mohajerin Esfahani
Viet Anh Nguyen
Soroosh Shafieezadeh-Abadeh
    OOD
ArXivPDFHTML

Papers citing "Wasserstein Distributionally Robust Optimization: Theory and Applications in Machine Learning"

47 / 47 papers shown
Title
Wasserstein Distributionally Robust Regret Optimization
Wasserstein Distributionally Robust Regret Optimization
Lukas-Benedikt Fiechtner
Jose Blanchet
27
0
0
15 Apr 2025
Achievable distributional robustness when the robust risk is only partially identified
Achievable distributional robustness when the robust risk is only partially identified
Julia Kostin
Nicola Gnecco
Fanny Yang
73
3
0
04 Feb 2025
Universal generalization guarantees for Wasserstein distributionally robust models
Universal generalization guarantees for Wasserstein distributionally robust models
Tam Le
Jérome Malick
OOD
53
2
0
28 Jan 2025
New Perspectives on Regularization and Computation in Optimal Transport-Based Distributionally Robust Optimization
New Perspectives on Regularization and Computation in Optimal Transport-Based Distributionally Robust Optimization
Soroosh Shafieezadeh-Abadeh
Liviu Aolaritei
Florian Dorfler
Daniel Kuhn
58
20
0
31 Dec 2024
Unsupervised Training of Convex Regularizers using Maximum Likelihood Estimation
Unsupervised Training of Convex Regularizers using Maximum Likelihood Estimation
Hongwei Tan
Ziruo Cai
Marcelo Pereyra
Subhadip Mukherjee
Junqi Tang
Carola-Bibiane Schönlieb
SSL
70
1
0
08 Apr 2024
Conformal Predictive Programming for Chance Constrained Optimization
Conformal Predictive Programming for Chance Constrained Optimization
Yiqi Zhao
Xinyi Yu
Matteo Sesia
Lars Lindemann
Lars Lindemann
42
3
0
12 Feb 2024
Algorithms for mean-field variational inference via polyhedral optimization in the Wasserstein space
Algorithms for mean-field variational inference via polyhedral optimization in the Wasserstein space
Yiheng Jiang
Sinho Chewi
Aram-Alexandre Pooladian
29
7
0
05 Dec 2023
Learning Optimal Classification Trees Robust to Distribution Shifts
Learning Optimal Classification Trees Robust to Distribution Shifts
Nathan Justin
S. Aghaei
Andrés Gómez
P. Vayanos
OOD
35
0
0
26 Oct 2023
Nonlinear Distributionally Robust Optimization
Nonlinear Distributionally Robust Optimization
Mohammed Rayyan Sheriff
Peyman Mohajerin Esfahani
32
2
0
05 Jun 2023
Twice Regularized Markov Decision Processes: The Equivalence between
  Robustness and Regularization
Twice Regularized Markov Decision Processes: The Equivalence between Robustness and Regularization
E. Derman
Yevgeniy Men
M. Geist
Shie Mannor
39
1
0
12 Mar 2023
Diagnosing Model Performance Under Distribution Shift
Diagnosing Model Performance Under Distribution Shift
Tiffany Cai
Hongseok Namkoong
Steve Yadlowsky
37
27
0
03 Mar 2023
Learning Against Distributional Uncertainty: On the Trade-off Between Robustness and Specificity
Learning Against Distributional Uncertainty: On the Trade-off Between Robustness and Specificity
Shixiong Wang
Haowei Wang
Xinke Li
Jean Honorio
OOD
65
1
0
31 Jan 2023
On adversarial robustness and the use of Wasserstein ascent-descent
  dynamics to enforce it
On adversarial robustness and the use of Wasserstein ascent-descent dynamics to enforce it
Camilo A. Garcia Trillos
Nicolas García Trillos
16
5
0
09 Jan 2023
A Distributionally Robust Optimization Framework for Extreme Event
  Estimation
A Distributionally Robust Optimization Framework for Extreme Event Estimation
Yuanlu Bai
H. Lam
Xinyu Zhang
28
4
0
03 Jan 2023
Distributional Robustness Bounds Generalization Errors
Distributional Robustness Bounds Generalization Errors
Shixiong Wang
Haowei Wang
OOD
32
4
0
20 Dec 2022
Stochastic Optimization for Spectral Risk Measures
Stochastic Optimization for Spectral Risk Measures
Ronak R. Mehta
Vincent Roulet
Krishna Pillutla
Lang Liu
Zaïd Harchaoui
32
6
0
10 Dec 2022
Path Planning Using Wassertein Distributionally Robust Deep Q-learning
Path Planning Using Wassertein Distributionally Robust Deep Q-learning
Cem Alptürk
Venkatraman Renganathan
OOD
16
0
0
04 Nov 2022
Instance-Dependent Generalization Bounds via Optimal Transport
Instance-Dependent Generalization Bounds via Optimal Transport
Songyan Hou
Parnian Kassraie
Anastasis Kratsios
Andreas Krause
Jonas Rothfuss
22
6
0
02 Nov 2022
Distributed Distributionally Robust Optimization with Non-Convex
  Objectives
Distributed Distributionally Robust Optimization with Non-Convex Objectives
Yang Jiao
Kai Yang
Dongjin Song
27
11
0
14 Oct 2022
An Optimal Transport Approach to Personalized Federated Learning
An Optimal Transport Approach to Personalized Federated Learning
Farzan Farnia
Amirhossein Reisizadeh
Ramtin Pedarsani
Ali Jadbabaie
OT
OOD
FedML
31
12
0
06 Jun 2022
On the Generalization of Wasserstein Robust Federated Learning
On the Generalization of Wasserstein Robust Federated Learning
Tung Nguyen
Tuan Dung Nguyen
Long Tan Le
Canh T. Dinh
N. H. Tran
OOD
FedML
21
6
0
03 Jun 2022
An improved central limit theorem and fast convergence rates for
  entropic transportation costs
An improved central limit theorem and fast convergence rates for entropic transportation costs
E. del Barrio
Alberto González Sanz
Jean-Michel Loubes
Jonathan Niles-Weed
OT
34
32
0
19 Apr 2022
Expert-Calibrated Learning for Online Optimization with Switching Costs
Expert-Calibrated Learning for Online Optimization with Switching Costs
Pengfei Li
Jianyi Yang
Shaolei Ren
24
11
0
18 Apr 2022
Global-Local Regularization Via Distributional Robustness
Global-Local Regularization Via Distributional Robustness
Hoang Phan
Trung Le
Trung-Nghia Phung
Tu Bui
Nhat Ho
Dinh Q. Phung
OOD
16
12
0
01 Mar 2022
A Unified Wasserstein Distributional Robustness Framework for
  Adversarial Training
A Unified Wasserstein Distributional Robustness Framework for Adversarial Training
Tu Bui
Trung Le
Quan Hung Tran
He Zhao
Dinh Q. Phung
AAML
OOD
31
42
0
27 Feb 2022
Distributionally Robust Fair Principal Components via Geodesic Descents
Distributionally Robust Fair Principal Components via Geodesic Descents
Hieu Vu
Toan M. Tran
Man-Chung Yue
Viet Anh Nguyen
11
14
0
07 Feb 2022
Rates of convergence for nonparametric estimation of singular
  distributions using generative adversarial networks
Rates of convergence for nonparametric estimation of singular distributions using generative adversarial networks
Minwoo Chae
GAN
32
4
0
07 Feb 2022
Counterfactual Plans under Distributional Ambiguity
Counterfactual Plans under Distributional Ambiguity
N. Bui
D. Nguyen
Viet Anh Nguyen
62
24
0
29 Jan 2022
Human Imperceptible Attacks and Applications to Improve Fairness
Human Imperceptible Attacks and Applications to Improve Fairness
Xinru Hua
Huanzhong Xu
Jose H. Blanchet
V. Nguyen
AAML
19
3
0
30 Nov 2021
Sinkhorn Distributionally Robust Optimization
Sinkhorn Distributionally Robust Optimization
Jie Wang
Rui Gao
Yao Xie
46
35
0
24 Sep 2021
On the regularized risk of distributionally robust learning over deep
  neural networks
On the regularized risk of distributionally robust learning over deep neural networks
Camilo A. Garcia Trillos
Nicolas García Trillos
OOD
37
10
0
13 Sep 2021
Distributionally Robust Learning
Distributionally Robust Learning
Ruidi Chen
I. Paschalidis
OOD
25
65
0
20 Aug 2021
Algorithmic Bias and Data Bias: Understanding the Relation between
  Distributionally Robust Optimization and Data Curation
Algorithmic Bias and Data Bias: Understanding the Relation between Distributionally Robust Optimization and Data Curation
Agnieszka Słowik
Léon Bottou
FaML
43
19
0
17 Jun 2021
Distributionally robust risk map for learning-based motion planning and
  control: A semidefinite programming approach
Distributionally robust risk map for learning-based motion planning and control: A semidefinite programming approach
A. Hakobyan
Insoon Yang
104
25
0
03 May 2021
Unbalanced minibatch Optimal Transport; applications to Domain
  Adaptation
Unbalanced minibatch Optimal Transport; applications to Domain Adaptation
Kilian Fatras
Thibault Séjourné
Nicolas Courty
Rémi Flamary
OT
34
146
0
05 Mar 2021
Adversarially Robust Kernel Smoothing
Adversarially Robust Kernel Smoothing
Jia-Jie Zhu
Christina Kouridi
Yassine Nemmour
Bernhard Schölkopf
26
7
0
16 Feb 2021
First-order Optimization for Superquantile-based Supervised Learning
First-order Optimization for Superquantile-based Supervised Learning
Yassine Laguel
J. Malick
Zaïd Harchaoui
12
9
0
30 Sep 2020
Distributionally Robust Losses for Latent Covariate Mixtures
Distributionally Robust Losses for Latent Covariate Mixtures
John C. Duchi
Tatsunori Hashimoto
Hongseok Namkoong
13
79
0
28 Jul 2020
A Distributionally Robust Approach to Fair Classification
A Distributionally Robust Approach to Fair Classification
Bahar Taşkesen
Viet Anh Nguyen
Daniel Kuhn
Jose H. Blanchet
FaML
26
61
0
18 Jul 2020
A Stochastic Subgradient Method for Distributionally Robust Non-Convex
  Learning
A Stochastic Subgradient Method for Distributionally Robust Non-Convex Learning
Mert Gurbuzbalaban
A. Ruszczynski
Landi Zhu
20
9
0
08 Jun 2020
Distributionally Robust Weighted $k$-Nearest Neighbors
Distributionally Robust Weighted kkk-Nearest Neighbors
Shixiang Zhu
Liyan Xie
Minghe Zhang
Rui Gao
Yao Xie
OOD
21
7
0
07 Jun 2020
Adversarial Classification via Distributional Robustness with
  Wasserstein Ambiguity
Adversarial Classification via Distributional Robustness with Wasserstein Ambiguity
Nam Ho-Nguyen
Stephen J. Wright
OOD
40
16
0
28 May 2020
On Linear Optimization over Wasserstein Balls
On Linear Optimization over Wasserstein Balls
Man-Chung Yue
Daniel Kuhn
W. Wiesemann
9
50
0
15 Apr 2020
Posterior asymptotics in Wasserstein metrics on the real line
Posterior asymptotics in Wasserstein metrics on the real line
Minwoo Chae
P. De Blasi
S. Walker
8
6
0
12 Mar 2020
Geometric Dataset Distances via Optimal Transport
Geometric Dataset Distances via Optimal Transport
David Alvarez-Melis
Nicolò Fusi
OT
72
194
0
07 Feb 2020
Certifying Some Distributional Robustness with Principled Adversarial
  Training
Certifying Some Distributional Robustness with Principled Adversarial Training
Aman Sinha
Hongseok Namkoong
Riccardo Volpi
John C. Duchi
OOD
38
854
0
29 Oct 2017
Limit laws of the empirical Wasserstein distance: Gaussian distributions
Limit laws of the empirical Wasserstein distance: Gaussian distributions
Thomas Rippl
Axel Munk
A. Sturm
46
64
0
15 Jul 2015
1