Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1908.09597
Cited By
Stochastic Filter Groups for Multi-Task CNNs: Learning Specialist and Generalist Convolution Kernels
26 August 2019
Felix J. S. Bragman
Ryutaro Tanno
Sebastien Ourselin
Daniel C. Alexander
M. Jorge Cardoso
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Stochastic Filter Groups for Multi-Task CNNs: Learning Specialist and Generalist Convolution Kernels"
14 / 14 papers shown
Title
E2E-MFD: Towards End-to-End Synchronous Multimodal Fusion Detection
Jiaqing Zhang
Mingxiang Cao
Weiying Xie
Jie Lei
Daixun Li
Wenbo Huang
Yunsong Li
Xue Yang
48
4
0
28 Jan 2025
Swiss Army Knife: Synergizing Biases in Knowledge from Vision Foundation Models for Multi-Task Learning
Yuxiang Lu
Shengcao Cao
Yu-xiong Wang
45
1
0
18 Oct 2024
Towards Modular LLMs by Building and Reusing a Library of LoRAs
O. Ostapenko
Zhan Su
E. Ponti
Laurent Charlin
Nicolas Le Roux
Matheus Pereira
Lucas Page-Caccia
Alessandro Sordoni
MoMe
32
30
0
18 May 2024
Alternate Training of Shared and Task-Specific Parameters for Multi-Task Neural Networks
Stefania Bellavia
Francesco Della Santa
Alessandra Papini
33
0
0
26 Dec 2023
FAMO: Fast Adaptive Multitask Optimization
B. Liu
Yihao Feng
Peter Stone
Qian Liu
33
30
0
06 Jun 2023
TMoE-P: Towards the Pareto Optimum for Multivariate Soft Sensors
Licheng Pan
Hao Wang
Zhichao Chen
Yuxin Huang
Xinggao Liu
10
0
0
21 Feb 2023
Context Label Learning: Improving Background Class Representations in Semantic Segmentation
Zeju Li
Konstantinos Kamnitsas
C. Ouyang
Chen Chen
Ben Glocker
VLM
25
6
0
16 Dec 2022
Highly Scalable Task Grouping for Deep Multi-Task Learning in Prediction of Epigenetic Events
Mohammad Shiri
Jiangwen Sun
11
1
0
24 Sep 2022
Universal Representations: A Unified Look at Multiple Task and Domain Learning
Wei-Hong Li
Xialei Liu
Hakan Bilen
SSL
OOD
28
27
0
06 Apr 2022
Learning Multiple Dense Prediction Tasks from Partially Annotated Data
Weihong Li
Xialei Liu
Hakan Bilen
31
39
0
29 Nov 2021
A Review of the Gumbel-max Trick and its Extensions for Discrete Stochasticity in Machine Learning
Iris A. M. Huijben
W. Kool
Max B. Paulus
Ruud J. G. van Sloun
24
92
0
04 Oct 2021
Reparameterizing Convolutions for Incremental Multi-Task Learning without Task Interference
Menelaos Kanakis
David Brüggemann
Suman Saha
Stamatios Georgoulis
Anton Obukhov
Luc Van Gool
CLL
22
72
0
24 Jul 2020
Maximum Roaming Multi-Task Learning
Lucas Pascal
Pietro Michiardi
Xavier Bost
B. Huet
Maria A. Zuluaga
17
31
0
17 Jun 2020
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
268
5,660
0
05 Dec 2016
1