ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1908.10525
  4. Cited By
Linear Convergence of Adaptive Stochastic Gradient Descent

Linear Convergence of Adaptive Stochastic Gradient Descent

28 August 2019
Yuege Xie
Xiaoxia Wu
Rachel A. Ward
ArXivPDFHTML

Papers citing "Linear Convergence of Adaptive Stochastic Gradient Descent"

11 / 11 papers shown
Title
Remove that Square Root: A New Efficient Scale-Invariant Version of AdaGrad
Remove that Square Root: A New Efficient Scale-Invariant Version of AdaGrad
Sayantan Choudhury
N. Tupitsa
Nicolas Loizou
Samuel Horváth
Martin Takáč
Eduard A. Gorbunov
43
1
0
05 Mar 2024
Relaxing the Additivity Constraints in Decentralized No-Regret
  High-Dimensional Bayesian Optimization
Relaxing the Additivity Constraints in Decentralized No-Regret High-Dimensional Bayesian Optimization
Anthony Bardou
Patrick Thiran
Thomas Begin
24
4
0
31 May 2023
TiAda: A Time-scale Adaptive Algorithm for Nonconvex Minimax
  Optimization
TiAda: A Time-scale Adaptive Algorithm for Nonconvex Minimax Optimization
Xiang Li
Junchi Yang
Niao He
34
8
0
31 Oct 2022
Accelerating SGD for Highly Ill-Conditioned Huge-Scale Online Matrix
  Completion
Accelerating SGD for Highly Ill-Conditioned Huge-Scale Online Matrix Completion
G. Zhang
Hong-Ming Chiu
Richard Y. Zhang
27
10
0
24 Aug 2022
Improved Policy Optimization for Online Imitation Learning
Improved Policy Optimization for Online Imitation Learning
J. Lavington
Sharan Vaswani
Mark Schmidt
OffRL
28
6
0
29 Jul 2022
Nest Your Adaptive Algorithm for Parameter-Agnostic Nonconvex Minimax
  Optimization
Nest Your Adaptive Algorithm for Parameter-Agnostic Nonconvex Minimax Optimization
Junchi Yang
Xiang Li
Niao He
ODL
45
22
0
01 Jun 2022
Optimal Algorithms for Stochastic Multi-Level Compositional Optimization
Optimal Algorithms for Stochastic Multi-Level Compositional Optimization
Wei Jiang
Bokun Wang
Yibo Wang
Lijun Zhang
Tianbao Yang
81
17
0
15 Feb 2022
Stochastic gradient descent with noise of machine learning type. Part I:
  Discrete time analysis
Stochastic gradient descent with noise of machine learning type. Part I: Discrete time analysis
Stephan Wojtowytsch
25
50
0
04 May 2021
Convergence of stochastic gradient descent schemes for
  Lojasiewicz-landscapes
Convergence of stochastic gradient descent schemes for Lojasiewicz-landscapes
Steffen Dereich
Sebastian Kassing
34
27
0
16 Feb 2021
Sequential convergence of AdaGrad algorithm for smooth convex
  optimization
Sequential convergence of AdaGrad algorithm for smooth convex optimization
Cheik Traoré
Edouard Pauwels
14
21
0
24 Nov 2020
A Qualitative Study of the Dynamic Behavior for Adaptive Gradient
  Algorithms
A Qualitative Study of the Dynamic Behavior for Adaptive Gradient Algorithms
Chao Ma
Lei Wu
E. Weinan
ODL
19
23
0
14 Sep 2020
1