ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1908.11812
  4. Cited By
The Barker proposal: combining robustness and efficiency in
  gradient-based MCMC
v1v2 (latest)

The Barker proposal: combining robustness and efficiency in gradient-based MCMC

30 August 2019
Samuel Livingstone
Giacomo Zanella
ArXiv (abs)PDFHTML

Papers citing "The Barker proposal: combining robustness and efficiency in gradient-based MCMC"

11 / 11 papers shown
Title
Using Perturbation to Improve Goodness-of-Fit Tests based on Kernelized
  Stein Discrepancy
Using Perturbation to Improve Goodness-of-Fit Tests based on Kernelized Stein Discrepancy
Xingtu Liu
Andrew B. Duncan
Axel Gandy
76
7
0
28 Apr 2023
Optimal Scaling for Locally Balanced Proposals in Discrete Spaces
Optimal Scaling for Locally Balanced Proposals in Discrete Spaces
Haoran Sun
H. Dai
Dale Schuurmans
90
13
0
16 Sep 2022
Discrete Langevin Sampler via Wasserstein Gradient Flow
Discrete Langevin Sampler via Wasserstein Gradient Flow
Haoran Sun
H. Dai
Bo Dai
Haomin Zhou
Dale Schuurmans
BDL
90
24
0
29 Jun 2022
Metropolis Adjusted Langevin Trajectories: a robust alternative to
  Hamiltonian Monte Carlo
Metropolis Adjusted Langevin Trajectories: a robust alternative to Hamiltonian Monte Carlo
L. Riou-Durand
Jure Vogrinc
90
15
0
26 Feb 2022
Adaptive random neighbourhood informed Markov chain Monte Carlo for
  high-dimensional Bayesian variable Selection
Adaptive random neighbourhood informed Markov chain Monte Carlo for high-dimensional Bayesian variable Selection
Xitong Liang
Samuel Livingstone
Jim Griffin
BDL
60
10
0
22 Oct 2021
A fresh take on 'Barker dynamics' for MCMC
A fresh take on 'Barker dynamics' for MCMC
Max Hird
Samuel Livingstone
Giacomo Zanella
93
9
0
17 Dec 2020
Penalised t-walk MCMC
Penalised t-walk MCMC
F. Medina-Aguayo
A. Christen
70
3
0
03 Dec 2020
Measure Transport with Kernel Stein Discrepancy
Measure Transport with Kernel Stein Discrepancy
Matthew A. Fisher
T. Nolan
Matthew M. Graham
D. Prangle
Chris J. Oates
OT
124
15
0
22 Oct 2020
An invitation to sequential Monte Carlo samplers
An invitation to sequential Monte Carlo samplers
Chenguang Dai
J. Heng
Pierre E. Jacob
N. Whiteley
132
68
0
23 Jul 2020
Optimal Thinning of MCMC Output
Optimal Thinning of MCMC Output
M. Riabiz
W. Chen
Jon Cockayne
P. Swietach
Steven Niederer
Lester W. Mackey
Chris J. Oates
78
47
0
08 May 2020
Informed reversible jump algorithms
Informed reversible jump algorithms
Philippe Gagnon
35
12
0
05 Nov 2019
1