Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1909.02414
Cited By
v1
v2 (latest)
Riemannian batch normalization for SPD neural networks
3 September 2019
Daniel A. Brooks
Olivier Schwander
F. Barbaresco
J. Schneider
Matthieu Cord
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Riemannian batch normalization for SPD neural networks"
45 / 45 papers shown
Title
SPD Learning for Covariance-Based Neuroimaging Analysis: Perspectives, Methods, and Challenges
Ce Ju
Reinmar J. Kobler
Antoine Collas
M. Kawanabe
Cuntai Guan
Bertrand Thirion
102
0
0
26 Apr 2025
Learning to Normalize on the SPD Manifold under Bures-Wasserstein Geometry
Rui Wang
Shaocheng Jin
Ziheng Chen
Xiaoqing Luo
Xiao Wu
79
0
0
01 Apr 2025
Wrapped Gaussian on the manifold of Symmetric Positive Definite Matrices
Thibault de Surrel
Fabien Lotte
Sylvain Chevallier
Florian Yger
156
1
0
03 Feb 2025
SPDFusion: An Infrared and Visible Image Fusion Network Based on a Non-Euclidean Representation of Riemannian Manifolds
Huan Kang
Hui Li
Tianyang Xu
Rui Wang
Xiao Wu
J. Kittler
147
1
0
16 Nov 2024
Tree-Wasserstein Distance for High Dimensional Data with a Latent Feature Hierarchy
Ya-Wei Eileen Lin
Ronald R. Coifman
Zhengchao Wan
Ronen Talmon
195
3
0
28 Oct 2024
Representation Learning for Regime detection in Block Hierarchical Financial Markets
Alexa Orton
Tim Gebbie
AIFin
16
0
0
14 Oct 2024
RMLR: Extending Multinomial Logistic Regression into General Geometries
Ziheng Chen
Yue Song
Rui Wang
Xiaojun Wu
N. Sebe
69
2
0
28 Sep 2024
Classification of Buried Objects from Ground Penetrating Radar Images by using Second Order Deep Learning Models
Douba Jafuno
A. Mian
G. Ginolhac
Nickolas Stelzenmuller
56
0
0
20 Sep 2024
Product Geometries on Cholesky Manifolds with Applications to SPD Manifolds
Ziheng Chen
Yue Song
Xiao-Jun Wu
N. Sebe
79
2
0
02 Jul 2024
Matrix Manifold Neural Networks++
Xuan Son Nguyen
Shuo Yang
A. Histace
76
6
0
29 May 2024
Random matrix theory improved Fréchet mean of symmetric positive definite matrices
Florent Bouchard
A. Mian
Malik Tiomoko
G. Ginolhac
Frédéric Pascal
130
1
0
10 May 2024
A Lie Group Approach to Riemannian Batch Normalization
Ziheng Chen
Yue Song
Yunmei Liu
N. Sebe
BDL
112
6
0
17 Mar 2024
V
k
D
:
V_kD:
V
k
D
:
Improving Knowledge Distillation using Orthogonal Projections
Roy Miles
Ismail Elezi
Jiankang Deng
112
10
0
10 Mar 2024
SPD-DDPM: Denoising Diffusion Probabilistic Models in the Symmetric Positive Definite Space
Yunchen Li
Zhou Yu
Gaoqi He
Yunhang Shen
Ke Li
Xing Sun
Shaohui Lin
DiffM
49
11
0
13 Dec 2023
Riemannian Self-Attention Mechanism for SPD Networks
Rui Wang
Xiao-Jun Wu
Hui Li
Josef Kittler
50
1
0
28 Nov 2023
Riemannian Residual Neural Networks
Isay Katsman
Eric Chen
Sidhanth Holalkere
Anna Asch
Aaron Lou
Ser-Nam Lim
Christopher De Sa
71
13
0
16 Oct 2023
Deep Geometric Learning with Monotonicity Constraints for Alzheimer's Disease Progression
Seungwoo Jeong
Wonsik Jung
Junghyo Sohn
Heung-Il Suk
87
3
0
05 Oct 2023
Modeling Graphs Beyond Hyperbolic: Graph Neural Networks in Symmetric Positive Definite Matrices
Weichen Zhao
Federico López
J. M. Riestenberg
Michael Strube
Diaaeldin Taha
Steve J. Trettel
82
7
0
24 Jun 2023
R-Mixup: Riemannian Mixup for Biological Networks
Xuan Kan
Zimu Li
Hejie Cui
Yue Yu
Ran Xu
Shaojun Yu
Zilong Zhang
Ying Guo
Carl Yang
99
8
0
05 Jun 2023
Riemannian Multinomial Logistics Regression for SPD Neural Networks
Ziheng Chen
Yue Song
Gaowen Liu
Ramana Rao Kompella
Xiaojun Wu
N. Sebe
80
5
0
18 May 2023
Building Neural Networks on Matrix Manifolds: A Gyrovector Space Approach
X. Nguyen
Shuo Yang
60
11
0
08 May 2023
Differential geometry with extreme eigenvalues in the positive semidefinite cone
Cyrus Mostajeran
Nathael Da Costa
Graham W. Van Goffrier
R. Sepulchre
70
4
0
14 Apr 2023
Sliced-Wasserstein on Symmetric Positive Definite Matrices for M/EEG Signals
Clément Bonet
Benoit Malézieux
A. Rakotomamonjy
Lucas Drumetz
Thomas Moreau
M. Kowalski
Nicolas Courty
96
16
0
10 Mar 2023
Graph Neural Networks on SPD Manifolds for Motor Imagery Classification: A Perspective from the Time-Frequency Analysis
Ce Ju
Cuntai Guan
107
22
0
25 Oct 2022
MAtt: A Manifold Attention Network for EEG Decoding
Yue Pan
Jing-Lun Chou
Chunshan Wei
63
43
0
05 Oct 2022
DreamNet: A Deep Riemannian Network based on SPD Manifold Learning for Visual Classification
Rui Wang
Xiaojun Wu
Ziheng Chen
Tianyang Xu
J. Kittler
37
2
0
16 Jun 2022
SPD domain-specific batch normalization to crack interpretable unsupervised domain adaptation in EEG
Reinmar J. Kobler
J. Hirayama
Qibin Zhao
M. Kawanabe
83
58
0
02 Jun 2022
Near out-of-distribution detection for low-resolution radar micro-Doppler signatures
Martin Bauw
Santiago Velasco-Forero
Jesús Angulo
C. Adnet
O. Airiau
OODD
84
5
0
12 May 2022
Fully-Connected Network on Noncompact Symmetric Space and Ridgelet Transform based on Helgason-Fourier Analysis
Sho Sonoda
Isao Ishikawa
Masahiro Ikeda
60
15
0
03 Mar 2022
2021 BEETL Competition: Advancing Transfer Learning for Subject Independence & Heterogenous EEG Data Sets
Xia Wei
Aldo A. Faisal
Moritz Grosse-Wentrup
Alexandre Gramfort
Sylvain Chevallier
...
Stephen M. Gordon
Vernon J. Lawhern
Maciej Śliwowski
Vincent Rouanne
Piotr Tempczyk
OOD
55
24
0
14 Feb 2022
Tensor-CSPNet: A Novel Geometric Deep Learning Framework for Motor Imagery Classification
Ce Ju
Cuntai Guan
49
58
0
05 Feb 2022
Riemannian Local Mechanism for SPD Neural Networks
Ziheng Chen
Tianyang Xu
Xiaojun Wu
Rui Wang
Zhiwu Huang
J. Kittler
77
17
0
25 Jan 2022
Deep Optimal Transport for Domain Adaptation on SPD Manifolds
Ce Ju
Cuntai Guan
142
3
0
15 Jan 2022
Deep Efficient Continuous Manifold Learning for Time Series Modeling
Seungwoo Jeong
Wonjun Ko
A. Mulyadi
Heung-Il Suk
AI4TS
85
7
0
03 Dec 2021
GeomNet: A Neural Network Based on Riemannian Geometries of SPD Matrix Space and Cholesky Space for 3D Skeleton-Based Interaction Recognition
X. Nguyen
3DH
48
33
0
25 Nov 2021
Vector-valued Distance and Gyrocalculus on the Space of Symmetric Positive Definite Matrices
F. López
Beatrice Pozzetti
Steve J. Trettel
Michael Strube
Anna Wienhard
72
17
0
26 Oct 2021
Manifold-aware Synthesis of High-resolution Diffusion from Structural Imaging
Benoit Anctil-Robitaille
Antoine Théberge
Pierre-Marc Jodoin
Maxime Descoteaux
Christian Desrosiers
H. Lombaert
MedIm
DiffM
26
3
0
09 Aug 2021
cCorrGAN: Conditional Correlation GAN for Learning Empirical Conditional Distributions in the Elliptope
Gautier Marti
Victor Goubet
Frank Nielsen
52
6
0
22 Jul 2021
Neural Architecture Search of SPD Manifold Networks
R. Sukthanker
Zhiwu Huang
Suryansh Kumar
Erik Goron Endsjo
Yan Wu
Luc Van Gool
93
14
0
27 Oct 2020
Normalization Techniques in Training DNNs: Methodology, Analysis and Application
Lei Huang
Jie Qin
Yi Zhou
Fan Zhu
Li Liu
Ling Shao
AI4CE
176
272
0
27 Sep 2020
Partial Trace Regression and Low-Rank Kraus Decomposition
Hachem Kadri
Stéphane Ayache
Riikka Huusari
A. Rakotomamonjy
L. Ralaivola
136
4
0
02 Jul 2020
Geoopt: Riemannian Optimization in PyTorch
Max Kochurov
R. Karimov
Sergei Kozlukov
92
126
0
06 May 2020
ManifoldNorm: Extending normalizations on Riemannian Manifolds
Rudrasis Chakraborty
25
11
0
30 Mar 2020
MVC-Net: A Convolutional Neural Network Architecture for Manifold-Valued Images With Applications
Jose J. Bouza
Chun-Hao Yang
David E Vaillancourt
B. Vemuri
48
4
0
02 Mar 2020
Differentiating through the Fréchet Mean
Aaron Lou
Isay Katsman
Qingxuan Jiang
Serge J. Belongie
Ser-Nam Lim
Christopher De Sa
DRL
158
64
0
29 Feb 2020
1