ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1909.02414
  4. Cited By
Riemannian batch normalization for SPD neural networks
v1v2 (latest)

Riemannian batch normalization for SPD neural networks

3 September 2019
Daniel A. Brooks
Olivier Schwander
F. Barbaresco
J. Schneider
Matthieu Cord
ArXiv (abs)PDFHTML

Papers citing "Riemannian batch normalization for SPD neural networks"

45 / 45 papers shown
Title
SPD Learning for Covariance-Based Neuroimaging Analysis: Perspectives, Methods, and Challenges
SPD Learning for Covariance-Based Neuroimaging Analysis: Perspectives, Methods, and Challenges
Ce Ju
Reinmar J. Kobler
Antoine Collas
M. Kawanabe
Cuntai Guan
Bertrand Thirion
102
0
0
26 Apr 2025
Learning to Normalize on the SPD Manifold under Bures-Wasserstein Geometry
Learning to Normalize on the SPD Manifold under Bures-Wasserstein Geometry
Rui Wang
Shaocheng Jin
Ziheng Chen
Xiaoqing Luo
Xiao Wu
79
0
0
01 Apr 2025
Wrapped Gaussian on the manifold of Symmetric Positive Definite Matrices
Wrapped Gaussian on the manifold of Symmetric Positive Definite Matrices
Thibault de Surrel
Fabien Lotte
Sylvain Chevallier
Florian Yger
156
1
0
03 Feb 2025
SPDFusion: An Infrared and Visible Image Fusion Network Based on a Non-Euclidean Representation of Riemannian Manifolds
SPDFusion: An Infrared and Visible Image Fusion Network Based on a Non-Euclidean Representation of Riemannian Manifolds
Huan Kang
Hui Li
Tianyang Xu
Rui Wang
Xiao Wu
J. Kittler
147
1
0
16 Nov 2024
Tree-Wasserstein Distance for High Dimensional Data with a Latent Feature Hierarchy
Tree-Wasserstein Distance for High Dimensional Data with a Latent Feature Hierarchy
Ya-Wei Eileen Lin
Ronald R. Coifman
Zhengchao Wan
Ronen Talmon
195
3
0
28 Oct 2024
Representation Learning for Regime detection in Block Hierarchical
  Financial Markets
Representation Learning for Regime detection in Block Hierarchical Financial Markets
Alexa Orton
Tim Gebbie
AIFin
16
0
0
14 Oct 2024
RMLR: Extending Multinomial Logistic Regression into General Geometries
RMLR: Extending Multinomial Logistic Regression into General Geometries
Ziheng Chen
Yue Song
Rui Wang
Xiaojun Wu
N. Sebe
69
2
0
28 Sep 2024
Classification of Buried Objects from Ground Penetrating Radar Images by
  using Second Order Deep Learning Models
Classification of Buried Objects from Ground Penetrating Radar Images by using Second Order Deep Learning Models
Douba Jafuno
A. Mian
G. Ginolhac
Nickolas Stelzenmuller
56
0
0
20 Sep 2024
Product Geometries on Cholesky Manifolds with Applications to SPD
  Manifolds
Product Geometries on Cholesky Manifolds with Applications to SPD Manifolds
Ziheng Chen
Yue Song
Xiao-Jun Wu
N. Sebe
79
2
0
02 Jul 2024
Matrix Manifold Neural Networks++
Matrix Manifold Neural Networks++
Xuan Son Nguyen
Shuo Yang
A. Histace
76
6
0
29 May 2024
Random matrix theory improved Fréchet mean of symmetric positive
  definite matrices
Random matrix theory improved Fréchet mean of symmetric positive definite matrices
Florent Bouchard
A. Mian
Malik Tiomoko
G. Ginolhac
Frédéric Pascal
130
1
0
10 May 2024
A Lie Group Approach to Riemannian Batch Normalization
A Lie Group Approach to Riemannian Batch Normalization
Ziheng Chen
Yue Song
Yunmei Liu
N. Sebe
BDL
112
6
0
17 Mar 2024
$V_kD:$ Improving Knowledge Distillation using Orthogonal Projections
VkD:V_kD:Vk​D: Improving Knowledge Distillation using Orthogonal Projections
Roy Miles
Ismail Elezi
Jiankang Deng
112
10
0
10 Mar 2024
SPD-DDPM: Denoising Diffusion Probabilistic Models in the Symmetric
  Positive Definite Space
SPD-DDPM: Denoising Diffusion Probabilistic Models in the Symmetric Positive Definite Space
Yunchen Li
Zhou Yu
Gaoqi He
Yunhang Shen
Ke Li
Xing Sun
Shaohui Lin
DiffM
49
11
0
13 Dec 2023
Riemannian Self-Attention Mechanism for SPD Networks
Riemannian Self-Attention Mechanism for SPD Networks
Rui Wang
Xiao-Jun Wu
Hui Li
Josef Kittler
50
1
0
28 Nov 2023
Riemannian Residual Neural Networks
Riemannian Residual Neural Networks
Isay Katsman
Eric Chen
Sidhanth Holalkere
Anna Asch
Aaron Lou
Ser-Nam Lim
Christopher De Sa
71
13
0
16 Oct 2023
Deep Geometric Learning with Monotonicity Constraints for Alzheimer's
  Disease Progression
Deep Geometric Learning with Monotonicity Constraints for Alzheimer's Disease Progression
Seungwoo Jeong
Wonsik Jung
Junghyo Sohn
Heung-Il Suk
87
3
0
05 Oct 2023
Modeling Graphs Beyond Hyperbolic: Graph Neural Networks in Symmetric
  Positive Definite Matrices
Modeling Graphs Beyond Hyperbolic: Graph Neural Networks in Symmetric Positive Definite Matrices
Weichen Zhao
Federico López
J. M. Riestenberg
Michael Strube
Diaaeldin Taha
Steve J. Trettel
82
7
0
24 Jun 2023
R-Mixup: Riemannian Mixup for Biological Networks
R-Mixup: Riemannian Mixup for Biological Networks
Xuan Kan
Zimu Li
Hejie Cui
Yue Yu
Ran Xu
Shaojun Yu
Zilong Zhang
Ying Guo
Carl Yang
99
8
0
05 Jun 2023
Riemannian Multinomial Logistics Regression for SPD Neural Networks
Riemannian Multinomial Logistics Regression for SPD Neural Networks
Ziheng Chen
Yue Song
Gaowen Liu
Ramana Rao Kompella
Xiaojun Wu
N. Sebe
80
5
0
18 May 2023
Building Neural Networks on Matrix Manifolds: A Gyrovector Space
  Approach
Building Neural Networks on Matrix Manifolds: A Gyrovector Space Approach
X. Nguyen
Shuo Yang
60
11
0
08 May 2023
Differential geometry with extreme eigenvalues in the positive
  semidefinite cone
Differential geometry with extreme eigenvalues in the positive semidefinite cone
Cyrus Mostajeran
Nathael Da Costa
Graham W. Van Goffrier
R. Sepulchre
70
4
0
14 Apr 2023
Sliced-Wasserstein on Symmetric Positive Definite Matrices for M/EEG
  Signals
Sliced-Wasserstein on Symmetric Positive Definite Matrices for M/EEG Signals
Clément Bonet
Benoit Malézieux
A. Rakotomamonjy
Lucas Drumetz
Thomas Moreau
M. Kowalski
Nicolas Courty
96
16
0
10 Mar 2023
Graph Neural Networks on SPD Manifolds for Motor Imagery Classification:
  A Perspective from the Time-Frequency Analysis
Graph Neural Networks on SPD Manifolds for Motor Imagery Classification: A Perspective from the Time-Frequency Analysis
Ce Ju
Cuntai Guan
107
22
0
25 Oct 2022
MAtt: A Manifold Attention Network for EEG Decoding
MAtt: A Manifold Attention Network for EEG Decoding
Yue Pan
Jing-Lun Chou
Chunshan Wei
63
43
0
05 Oct 2022
DreamNet: A Deep Riemannian Network based on SPD Manifold Learning for
  Visual Classification
DreamNet: A Deep Riemannian Network based on SPD Manifold Learning for Visual Classification
Rui Wang
Xiaojun Wu
Ziheng Chen
Tianyang Xu
J. Kittler
37
2
0
16 Jun 2022
SPD domain-specific batch normalization to crack interpretable
  unsupervised domain adaptation in EEG
SPD domain-specific batch normalization to crack interpretable unsupervised domain adaptation in EEG
Reinmar J. Kobler
J. Hirayama
Qibin Zhao
M. Kawanabe
83
58
0
02 Jun 2022
Near out-of-distribution detection for low-resolution radar
  micro-Doppler signatures
Near out-of-distribution detection for low-resolution radar micro-Doppler signatures
Martin Bauw
Santiago Velasco-Forero
Jesús Angulo
C. Adnet
O. Airiau
OODD
84
5
0
12 May 2022
Fully-Connected Network on Noncompact Symmetric Space and Ridgelet
  Transform based on Helgason-Fourier Analysis
Fully-Connected Network on Noncompact Symmetric Space and Ridgelet Transform based on Helgason-Fourier Analysis
Sho Sonoda
Isao Ishikawa
Masahiro Ikeda
60
15
0
03 Mar 2022
2021 BEETL Competition: Advancing Transfer Learning for Subject
  Independence & Heterogenous EEG Data Sets
2021 BEETL Competition: Advancing Transfer Learning for Subject Independence & Heterogenous EEG Data Sets
Xia Wei
Aldo A. Faisal
Moritz Grosse-Wentrup
Alexandre Gramfort
Sylvain Chevallier
...
Stephen M. Gordon
Vernon J. Lawhern
Maciej Śliwowski
Vincent Rouanne
Piotr Tempczyk
OOD
55
24
0
14 Feb 2022
Tensor-CSPNet: A Novel Geometric Deep Learning Framework for Motor
  Imagery Classification
Tensor-CSPNet: A Novel Geometric Deep Learning Framework for Motor Imagery Classification
Ce Ju
Cuntai Guan
49
58
0
05 Feb 2022
Riemannian Local Mechanism for SPD Neural Networks
Riemannian Local Mechanism for SPD Neural Networks
Ziheng Chen
Tianyang Xu
Xiaojun Wu
Rui Wang
Zhiwu Huang
J. Kittler
77
17
0
25 Jan 2022
Deep Optimal Transport for Domain Adaptation on SPD Manifolds
Deep Optimal Transport for Domain Adaptation on SPD Manifolds
Ce Ju
Cuntai Guan
142
3
0
15 Jan 2022
Deep Efficient Continuous Manifold Learning for Time Series Modeling
Deep Efficient Continuous Manifold Learning for Time Series Modeling
Seungwoo Jeong
Wonjun Ko
A. Mulyadi
Heung-Il Suk
AI4TS
85
7
0
03 Dec 2021
GeomNet: A Neural Network Based on Riemannian Geometries of SPD Matrix
  Space and Cholesky Space for 3D Skeleton-Based Interaction Recognition
GeomNet: A Neural Network Based on Riemannian Geometries of SPD Matrix Space and Cholesky Space for 3D Skeleton-Based Interaction Recognition
X. Nguyen
3DH
48
33
0
25 Nov 2021
Vector-valued Distance and Gyrocalculus on the Space of Symmetric
  Positive Definite Matrices
Vector-valued Distance and Gyrocalculus on the Space of Symmetric Positive Definite Matrices
F. López
Beatrice Pozzetti
Steve J. Trettel
Michael Strube
Anna Wienhard
72
17
0
26 Oct 2021
Manifold-aware Synthesis of High-resolution Diffusion from Structural
  Imaging
Manifold-aware Synthesis of High-resolution Diffusion from Structural Imaging
Benoit Anctil-Robitaille
Antoine Théberge
Pierre-Marc Jodoin
Maxime Descoteaux
Christian Desrosiers
H. Lombaert
MedImDiffM
26
3
0
09 Aug 2021
cCorrGAN: Conditional Correlation GAN for Learning Empirical Conditional
  Distributions in the Elliptope
cCorrGAN: Conditional Correlation GAN for Learning Empirical Conditional Distributions in the Elliptope
Gautier Marti
Victor Goubet
Frank Nielsen
52
6
0
22 Jul 2021
Neural Architecture Search of SPD Manifold Networks
Neural Architecture Search of SPD Manifold Networks
R. Sukthanker
Zhiwu Huang
Suryansh Kumar
Erik Goron Endsjo
Yan Wu
Luc Van Gool
93
14
0
27 Oct 2020
Normalization Techniques in Training DNNs: Methodology, Analysis and
  Application
Normalization Techniques in Training DNNs: Methodology, Analysis and Application
Lei Huang
Jie Qin
Yi Zhou
Fan Zhu
Li Liu
Ling Shao
AI4CE
176
272
0
27 Sep 2020
Partial Trace Regression and Low-Rank Kraus Decomposition
Partial Trace Regression and Low-Rank Kraus Decomposition
Hachem Kadri
Stéphane Ayache
Riikka Huusari
A. Rakotomamonjy
L. Ralaivola
136
4
0
02 Jul 2020
Geoopt: Riemannian Optimization in PyTorch
Geoopt: Riemannian Optimization in PyTorch
Max Kochurov
R. Karimov
Sergei Kozlukov
92
126
0
06 May 2020
ManifoldNorm: Extending normalizations on Riemannian Manifolds
ManifoldNorm: Extending normalizations on Riemannian Manifolds
Rudrasis Chakraborty
25
11
0
30 Mar 2020
MVC-Net: A Convolutional Neural Network Architecture for Manifold-Valued
  Images With Applications
MVC-Net: A Convolutional Neural Network Architecture for Manifold-Valued Images With Applications
Jose J. Bouza
Chun-Hao Yang
David E Vaillancourt
B. Vemuri
48
4
0
02 Mar 2020
Differentiating through the Fréchet Mean
Differentiating through the Fréchet Mean
Aaron Lou
Isay Katsman
Qingxuan Jiang
Serge J. Belongie
Ser-Nam Lim
Christopher De Sa
DRL
158
64
0
29 Feb 2020
1