ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1909.10145
  4. Cited By
PPINN: Parareal Physics-Informed Neural Network for time-dependent PDEs

PPINN: Parareal Physics-Informed Neural Network for time-dependent PDEs

23 September 2019
Xuhui Meng
Zhen Li
Dongkun Zhang
George Karniadakis
    PINN
    AI4CE
ArXivPDFHTML

Papers citing "PPINN: Parareal Physics-Informed Neural Network for time-dependent PDEs"

33 / 33 papers shown
Title
Uncertainty propagation in feed-forward neural network models
Uncertainty propagation in feed-forward neural network models
Jeremy Diamzon
Daniele Venturi
60
0
0
27 Mar 2025
Physics-informed deep learning for infectious disease forecasting
Physics-informed deep learning for infectious disease forecasting
Y. Qian
Éric Marty
Avranil Basu
Avranil Basu
Eamon B. O'Dea
Xianqiao Wang
Spencer Fox
Pejman Rohani
John M. Drake
He Li
PINN
AI4CE
80
2
0
16 Jan 2025
Nearest Neighbors GParareal: Improving Scalability of Gaussian Processes
  for Parallel-in-Time Solvers
Nearest Neighbors GParareal: Improving Scalability of Gaussian Processes for Parallel-in-Time Solvers
Guglielmo Gattiglio
Lyudmila Grigoryeva
M. Tamborrino
27
1
0
20 May 2024
Physics-informed Deep Learning to Solve Three-dimensional Terzaghi
  Consolidation Equation: Forward and Inverse Problems
Physics-informed Deep Learning to Solve Three-dimensional Terzaghi Consolidation Equation: Forward and Inverse Problems
Biao Yuan
Ana Heitor
He Wang
Xiaohui Chen
AI4CE
PINN
31
1
0
08 Jan 2024
Adversarial Training for Physics-Informed Neural Networks
Adversarial Training for Physics-Informed Neural Networks
Yao Li
Shengzhu Shi
Zhichang Guo
Boying Wu
AAML
PINN
25
0
0
18 Oct 2023
Neural tangent kernel analysis of PINN for advection-diffusion equation
Neural tangent kernel analysis of PINN for advection-diffusion equation
M. Saadat
B. Gjorgiev
L. Das
G. Sansavini
25
0
0
21 Nov 2022
Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
  Networks on Coupled Ordinary Differential Equations
Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural Networks on Coupled Ordinary Differential Equations
Alexander New
B. Eng
A. Timm
A. Gearhart
17
4
0
14 Oct 2022
Semi-analytic PINN methods for singularly perturbed boundary value
  problems
Semi-analytic PINN methods for singularly perturbed boundary value problems
G. Gie
Youngjoon Hong
Chang-Yeol Jung
PINN
8
5
0
19 Aug 2022
A comprehensive study of non-adaptive and residual-based adaptive
  sampling for physics-informed neural networks
A comprehensive study of non-adaptive and residual-based adaptive sampling for physics-informed neural networks
Chen-Chun Wu
M. Zhu
Qinyan Tan
Yadhu Kartha
Lu Lu
24
351
0
21 Jul 2022
Unsupervised Legendre-Galerkin Neural Network for Singularly Perturbed
  Partial Differential Equations
Unsupervised Legendre-Galerkin Neural Network for Singularly Perturbed Partial Differential Equations
Junho Choi
N. Kim
Youngjoon Hong
AI4CE
24
0
0
21 Jul 2022
Lagrangian PINNs: A causality-conforming solution to failure modes of
  physics-informed neural networks
Lagrangian PINNs: A causality-conforming solution to failure modes of physics-informed neural networks
R. Mojgani
Maciej Balajewicz
P. Hassanzadeh
PINN
25
45
0
05 May 2022
A Review of Machine Learning Methods Applied to Structural Dynamics and
  Vibroacoustic
A Review of Machine Learning Methods Applied to Structural Dynamics and Vibroacoustic
Barbara Z Cunha
C. Droz
A. Zine
Stéphane Foulard
M. Ichchou
AI4CE
29
84
0
13 Apr 2022
Monte Carlo PINNs: deep learning approach for forward and inverse
  problems involving high dimensional fractional partial differential equations
Monte Carlo PINNs: deep learning approach for forward and inverse problems involving high dimensional fractional partial differential equations
Ling Guo
Hao Wu
Xiao-Jun Yu
Tao Zhou
PINN
AI4CE
21
58
0
16 Mar 2022
Physics Informed RNN-DCT Networks for Time-Dependent Partial
  Differential Equations
Physics Informed RNN-DCT Networks for Time-Dependent Partial Differential Equations
Benwei Wu
O. Hennigh
Jan Kautz
S. Choudhry
Wonmin Byeon
MLAU
AI4CE
4
10
0
24 Feb 2022
Learning Stochastic Dynamics with Statistics-Informed Neural Network
Learning Stochastic Dynamics with Statistics-Informed Neural Network
Yuanran Zhu
Yunhao Tang
Changho Kim
19
18
0
24 Feb 2022
GParareal: A time-parallel ODE solver using Gaussian process emulation
GParareal: A time-parallel ODE solver using Gaussian process emulation
K. Pentland
M. Tamborrino
Timothy John Sullivan
J. Buchanan
Lynton C. Appel
11
8
0
31 Jan 2022
Scientific Machine Learning through Physics-Informed Neural Networks:
  Where we are and What's next
Scientific Machine Learning through Physics-Informed Neural Networks: Where we are and What's next
S. Cuomo
Vincenzo Schiano Di Cola
F. Giampaolo
G. Rozza
Maizar Raissi
F. Piccialli
PINN
26
1,177
0
14 Jan 2022
A coarse space acceleration of deep-DDM
A coarse space acceleration of deep-DDM
Valentin Mercier
Serge Gratton
Pierre Boudier
AI4CE
33
10
0
07 Dec 2021
An extended physics informed neural network for preliminary analysis of
  parametric optimal control problems
An extended physics informed neural network for preliminary analysis of parametric optimal control problems
N. Demo
M. Strazzullo
G. Rozza
PINN
31
33
0
26 Oct 2021
Multi-Objective Loss Balancing for Physics-Informed Deep Learning
Multi-Objective Loss Balancing for Physics-Informed Deep Learning
Rafael Bischof
M. Kraus
PINN
AI4CE
33
92
0
19 Oct 2021
A Review of Physics-based Machine Learning in Civil Engineering
A Review of Physics-based Machine Learning in Civil Engineering
S. Vadyala
S. N. Betgeri
J. Matthews
Elizabeth Matthews
AI4CE
25
152
0
09 Oct 2021
PCNN: A physics-constrained neural network for multiphase flows
PCNN: A physics-constrained neural network for multiphase flows
Haoyang Zheng
Ziyang Huang
Guang Lin
PINN
19
8
0
18 Sep 2021
Legendre Deep Neural Network (LDNN) and its application for
  approximation of nonlinear Volterra Fredholm Hammerstein integral equations
Legendre Deep Neural Network (LDNN) and its application for approximation of nonlinear Volterra Fredholm Hammerstein integral equations
Z. Hajimohammadi
Kourosh Parand
A. Ghodsi
28
4
0
27 Jun 2021
Multifidelity Modeling for Physics-Informed Neural Networks (PINNs)
Multifidelity Modeling for Physics-Informed Neural Networks (PINNs)
Michael Penwarden
Shandian Zhe
A. Narayan
Robert M. Kirby
13
42
0
25 Jun 2021
Long-time integration of parametric evolution equations with
  physics-informed DeepONets
Long-time integration of parametric evolution equations with physics-informed DeepONets
Sifan Wang
P. Perdikaris
AI4CE
17
117
0
09 Jun 2021
Neural network architectures using min-plus algebra for solving certain
  high dimensional optimal control problems and Hamilton-Jacobi PDEs
Neural network architectures using min-plus algebra for solving certain high dimensional optimal control problems and Hamilton-Jacobi PDEs
Jérome Darbon
P. Dower
Tingwei Meng
6
22
0
07 May 2021
Interpretable Machine Learning: Fundamental Principles and 10 Grand
  Challenges
Interpretable Machine Learning: Fundamental Principles and 10 Grand Challenges
Cynthia Rudin
Chaofan Chen
Zhi Chen
Haiyang Huang
Lesia Semenova
Chudi Zhong
FaML
AI4CE
LRM
59
651
0
20 Mar 2021
Evolutional Deep Neural Network
Evolutional Deep Neural Network
Yifan Du
T. Zaki
16
68
0
18 Mar 2021
Performance Comparison for Scientific Computations on the Edge via
  Relative Performance
Performance Comparison for Scientific Computations on the Edge via Relative Performance
Aravind Sankaran
Paolo Bientinesi
12
4
0
25 Feb 2021
An overview on deep learning-based approximation methods for partial
  differential equations
An overview on deep learning-based approximation methods for partial differential equations
C. Beck
Martin Hutzenthaler
Arnulf Jentzen
Benno Kuckuck
30
146
0
22 Dec 2020
Physics-informed Neural-Network Software for Molecular Dynamics
  Applications
Physics-informed Neural-Network Software for Molecular Dynamics Applications
Taufeq Mohammed Razakh
Beibei Wang
Shane Jackson
R. Kalia
A. Nakano
K. Nomura
P. Vashishta
PINN
11
11
0
06 Nov 2020
Deep learning of free boundary and Stefan problems
Deep learning of free boundary and Stefan problems
Sifan Wang
P. Perdikaris
21
80
0
04 Jun 2020
DiscretizationNet: A Machine-Learning based solver for Navier-Stokes
  Equations using Finite Volume Discretization
DiscretizationNet: A Machine-Learning based solver for Navier-Stokes Equations using Finite Volume Discretization
Rishikesh Ranade
C. Hill
Jay Pathak
AI4CE
46
123
0
17 May 2020
1