Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
All Papers
0 / 0 papers shown
Title
Home
Papers
1909.11500
Cited By
v1
v2
v3
v4 (latest)
Modelling the influence of data structure on learning in neural networks: the hidden manifold model
25 September 2019
Sebastian Goldt
M. Mézard
Florent Krzakala
Lenka Zdeborová
BDL
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Modelling the influence of data structure on learning in neural networks: the hidden manifold model"
36 / 36 papers shown
Title
Geometry of Neural Reinforcement Learning in Continuous State and Action Spaces
International Conference on Learning Representations (ICLR), 2025
Saket Tiwari
Omer Gottesman
George Konidaris
158
2
0
28 Jul 2025
On the Geometry of Reinforcement Learning in Continuous State and Action Spaces
Saket Tiwari
Omer Gottesman
George Konidaris
141
0
0
29 Dec 2022
Effects of Data Geometry in Early Deep Learning
Neural Information Processing Systems (NeurIPS), 2022
Saket Tiwari
George Konidaris
297
7
0
29 Dec 2022
On the Robustness of Bayesian Neural Networks to Adversarial Attacks
IEEE Transactions on Neural Networks and Learning Systems (TNNLS), 2022
Luca Bortolussi
Ginevra Carbone
Luca Laurenti
A. Patané
G. Sanguinetti
Matthew Wicker
AAML
211
14
0
13 Jul 2022
Learning and generalization of one-hidden-layer neural networks, going beyond standard Gaussian data
Annual Conference on Information Sciences and Systems (CISS), 2022
Hongkang Li
Shuai Zhang
Ming Wang
MLT
183
10
0
07 Jul 2022
Deep Networks on Toroids: Removing Symmetries Reveals the Structure of Flat Regions in the Landscape Geometry
International Conference on Machine Learning (ICML), 2022
Fabrizio Pittorino
Antonio Ferraro
Gabriele Perugini
Christoph Feinauer
Carlo Baldassi
R. Zecchina
464
28
0
07 Feb 2022
Quantifying Relevance in Learning and Inference
Physics reports (Phys. Rep.), 2022
M. Marsili
Y. Roudi
116
20
0
01 Feb 2022
The emergence of a concept in shallow neural networks
Neural Networks (NN), 2021
E. Agliari
Francesco Alemanno
Adriano Barra
G. D. Marzo
129
48
0
01 Sep 2021
Deep Networks Provably Classify Data on Curves
Neural Information Processing Systems (NeurIPS), 2021
Tingran Wang
Sam Buchanan
D. Gilboa
John N. Wright
214
9
0
29 Jul 2021
Slope and generalization properties of neural networks
Anton Johansson
Niklas Engsner
Claes Strannegård
P. Mostad
OOD
66
0
0
03 Jul 2021
Probing transfer learning with a model of synthetic correlated datasets
Federica Gerace
Luca Saglietti
Stefano Sarao Mannelli
Andrew M. Saxe
Lenka Zdeborová
OOD
137
36
0
09 Jun 2021
On the interplay between data structure and loss function in classification problems
Neural Information Processing Systems (NeurIPS), 2021
Stéphane dÁscoli
Marylou Gabrié
Levent Sagun
Giulio Biroli
222
17
0
09 Mar 2021
Learning curves of generic features maps for realistic datasets with a teacher-student model
Neural Information Processing Systems (NeurIPS), 2021
Bruno Loureiro
Cédric Gerbelot
Hugo Cui
Sebastian Goldt
Florent Krzakala
M. Mézard
Lenka Zdeborová
278
151
0
16 Feb 2021
On Data-Augmentation and Consistency-Based Semi-Supervised Learning
International Conference on Learning Representations (ICLR), 2021
Atin Ghosh
Alexandre Hoang Thiery
182
22
0
18 Jan 2021
Solvable Model for Inheriting the Regularization through Knowledge Distillation
Mathematical and Scientific Machine Learning (MSML), 2020
Luca Saglietti
Lenka Zdeborová
257
22
0
01 Dec 2020
Toward Better Generalization Bounds with Locally Elastic Stability
International Conference on Machine Learning (ICML), 2020
Zhun Deng
Hangfeng He
Weijie J. Su
210
48
0
27 Oct 2020
What causes the test error? Going beyond bias-variance via ANOVA
Journal of machine learning research (JMLR), 2020
Licong Lin
Guang Cheng
252
35
0
11 Oct 2020
Deep Networks and the Multiple Manifold Problem
International Conference on Learning Representations (ICLR), 2020
Sam Buchanan
D. Gilboa
John N. Wright
417
41
0
25 Aug 2020
Universality of Linearized Message Passing for Phase Retrieval with Structured Sensing Matrices
Rishabh Dudeja
Milad Bakhshizadeh
339
13
0
24 Aug 2020
Geometric compression of invariant manifolds in neural nets
J. Paccolat
Leonardo Petrini
Mario Geiger
Kevin Tyloo
Matthieu Wyart
MLT
236
37
0
22 Jul 2020
Large scale analysis of generalization error in learning using margin based classification methods
Journal of Statistical Mechanics: Theory and Experiment (JSTAT), 2020
Hanwen Huang
Qinglong Yang
132
9
0
16 Jul 2020
Hierarchical nucleation in deep neural networks
Diego Doimo
Aldo Glielmo
A. Ansuini
Alessandro Laio
BDL
AI4CE
163
35
0
07 Jul 2020
Is SGD a Bayesian sampler? Well, almost
Chris Mingard
Guillermo Valle Pérez
Joar Skalse
A. Louis
BDL
204
60
0
26 Jun 2020
Post-Workshop Report on Science meets Engineering in Deep Learning, NeurIPS 2019, Vancouver
Levent Sagun
Çağlar Gülçehre
Adriana Romero
Negar Rostamzadeh
Stefano Sarao Mannelli
3DV
108
0
0
25 Jun 2020
Generalisation Guarantees for Continual Learning with Orthogonal Gradient Descent
Mehdi Abbana Bennani
Thang Doan
Masashi Sugiyama
CLL
334
69
0
21 Jun 2020
How isotropic kernels perform on simple invariants
J. Paccolat
S. Spigler
Matthieu Wyart
263
4
0
17 Jun 2020
Dynamical mean-field theory for stochastic gradient descent in Gaussian mixture classification
Neural Information Processing Systems (NeurIPS), 2020
Francesca Mignacco
Florent Krzakala
Pierfrancesco Urbani
Lenka Zdeborová
MLT
276
73
0
10 Jun 2020
Triple descent and the two kinds of overfitting: Where & why do they appear?
Stéphane dÁscoli
Levent Sagun
Giulio Biroli
208
84
0
05 Jun 2020
Optimal Learning with Excitatory and Inhibitory synapses
Alessandro Ingrosso
68
5
0
25 May 2020
Fractional Deep Neural Network via Constrained Optimization
Harbir Antil
R. Khatri
R. Löhner
Deepanshu Verma
140
32
0
01 Apr 2020
Double Trouble in Double Descent : Bias and Variance(s) in the Lazy Regime
International Conference on Machine Learning (ICML), 2020
Stéphane dÁscoli
Maria Refinetti
Giulio Biroli
Florent Krzakala
331
158
0
02 Mar 2020
Generalisation error in learning with random features and the hidden manifold model
International Conference on Machine Learning (ICML), 2020
Federica Gerace
Bruno Loureiro
Florent Krzakala
M. Mézard
Lenka Zdeborová
227
179
0
21 Feb 2020
Robustness of Bayesian Neural Networks to Gradient-Based Attacks
Neural Information Processing Systems (NeurIPS), 2020
Ginevra Carbone
Matthew Wicker
Luca Laurenti
A. Patané
Luca Bortolussi
G. Sanguinetti
AAML
201
82
0
11 Feb 2020
Mean-field inference methods for neural networks
Marylou Gabrié
AI4CE
307
34
0
03 Nov 2019
Hidden Unit Specialization in Layered Neural Networks: ReLU vs. Sigmoidal Activation
Elisa Oostwal
Michiel Straat
Michael Biehl
MLT
209
63
0
16 Oct 2019
The Local Elasticity of Neural Networks
International Conference on Learning Representations (ICLR), 2019
Hangfeng He
Weijie J. Su
258
51
0
15 Oct 2019
1