Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1909.12051
Cited By
The Implicit Bias of Depth: How Incremental Learning Drives Generalization
26 September 2019
Daniel Gissin
Shai Shalev-Shwartz
Amit Daniely
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"The Implicit Bias of Depth: How Incremental Learning Drives Generalization"
21 / 21 papers shown
Title
Deep Weight Factorization: Sparse Learning Through the Lens of Artificial Symmetries
Chris Kolb
T. Weber
Bernd Bischl
David Rügamer
117
0
0
04 Feb 2025
From Lazy to Rich: Exact Learning Dynamics in Deep Linear Networks
Clémentine Dominé
Nicolas Anguita
A. Proca
Lukas Braun
D. Kunin
P. Mediano
Andrew M. Saxe
43
3
0
22 Sep 2024
Compressible Dynamics in Deep Overparameterized Low-Rank Learning & Adaptation
Can Yaras
Peng Wang
Laura Balzano
Qing Qu
AI4CE
42
14
0
06 Jun 2024
Connectivity Shapes Implicit Regularization in Matrix Factorization Models for Matrix Completion
Zhiwei Bai
Jiajie Zhao
Tao Luo
AI4CE
37
0
0
22 May 2024
Understanding the Double Descent Phenomenon in Deep Learning
Marc Lafon
Alexandre Thomas
27
2
0
15 Mar 2024
Robust Sparse Mean Estimation via Incremental Learning
Jianhao Ma
Ruidi Chen
Yinghui He
S. Fattahi
Wei Hu
38
0
0
24 May 2023
Gradient Descent Monotonically Decreases the Sharpness of Gradient Flow Solutions in Scalar Networks and Beyond
Itai Kreisler
Mor Shpigel Nacson
Daniel Soudry
Y. Carmon
35
13
0
22 May 2023
Robust Implicit Regularization via Weight Normalization
H. Chou
Holger Rauhut
Rachel A. Ward
40
7
0
09 May 2023
Saddle-to-Saddle Dynamics in Diagonal Linear Networks
Scott Pesme
Nicolas Flammarion
44
35
0
02 Apr 2023
Learning time-scales in two-layers neural networks
Raphael Berthier
Andrea Montanari
Kangjie Zhou
41
33
0
28 Feb 2023
Implicit Regularization Leads to Benign Overfitting for Sparse Linear Regression
Mo Zhou
Rong Ge
46
2
0
01 Feb 2023
Understanding Incremental Learning of Gradient Descent: A Fine-grained Analysis of Matrix Sensing
Jikai Jin
Zhiyuan Li
Kaifeng Lyu
S. Du
Jason D. Lee
MLT
56
34
0
27 Jan 2023
Blessing of Nonconvexity in Deep Linear Models: Depth Flattens the Optimization Landscape Around the True Solution
Jianhao Ma
S. Fattahi
49
5
0
15 Jul 2022
Provable Acceleration of Heavy Ball beyond Quadratics for a Class of Polyak-Łojasiewicz Functions when the Non-Convexity is Averaged-Out
Jun-Kun Wang
Chi-Heng Lin
Andre Wibisono
Bin Hu
38
20
0
22 Jun 2022
What do CNNs Learn in the First Layer and Why? A Linear Systems Perspective
Rhea Chowers
Yair Weiss
35
2
0
06 Jun 2022
Implicit Regularization in Hierarchical Tensor Factorization and Deep Convolutional Neural Networks
Noam Razin
Asaf Maman
Nadav Cohen
49
29
0
27 Jan 2022
The loss landscape of deep linear neural networks: a second-order analysis
El Mehdi Achour
Franccois Malgouyres
Sébastien Gerchinovitz
ODL
26
9
0
28 Jul 2021
A Unifying View on Implicit Bias in Training Linear Neural Networks
Chulhee Yun
Shankar Krishnan
H. Mobahi
MLT
26
80
0
06 Oct 2020
Implicit Bias in Deep Linear Classification: Initialization Scale vs Training Accuracy
E. Moroshko
Suriya Gunasekar
Blake E. Woodworth
Jason D. Lee
Nathan Srebro
Daniel Soudry
35
85
0
13 Jul 2020
Shape Matters: Understanding the Implicit Bias of the Noise Covariance
Jeff Z. HaoChen
Colin Wei
Jason D. Lee
Tengyu Ma
32
94
0
15 Jun 2020
Implicit Regularization in Deep Learning May Not Be Explainable by Norms
Noam Razin
Nadav Cohen
24
155
0
13 May 2020
1