Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1909.12077
Cited By
Symplectic ODE-Net: Learning Hamiltonian Dynamics with Control
26 September 2019
Yaofeng Desmond Zhong
Biswadip Dey
Amit Chakraborty
PINN
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Symplectic ODE-Net: Learning Hamiltonian Dynamics with Control"
50 / 170 papers shown
Title
Likelihood-based generalization of Markov parameter estimation and multiple shooting objectives in system identification
Nicholas Galioto
Alex Arkady Gorodetsky
26
1
0
20 Dec 2022
Physics-Informed Model-Based Reinforcement Learning
Adithya Ramesh
Balaraman Ravindran
13
10
0
05 Dec 2022
Guaranteed Conformance of Neurosymbolic Models to Natural Constraints
Kaustubh Sridhar
Souradeep Dutta
James Weimer
Insup Lee
17
7
0
02 Dec 2022
Knowledge-augmented Deep Learning and Its Applications: A Survey
Zijun Cui
Tian Gao
Kartik Talamadupula
Qiang Ji
22
17
0
30 Nov 2022
Lie Group Forced Variational Integrator Networks for Learning and Control of Robot Systems
Valentin Duruisseaux
T. Duong
Melvin Leok
Nikolay A. Atanasov
DRL
AI4CE
10
11
0
29 Nov 2022
Physics-Informed Machine Learning: A Survey on Problems, Methods and Applications
Zhongkai Hao
Songming Liu
Yichi Zhang
Chengyang Ying
Yao Feng
Hang Su
Jun Zhu
PINN
AI4CE
23
89
0
15 Nov 2022
Unravelling the Performance of Physics-informed Graph Neural Networks for Dynamical Systems
A. Thangamuthu
Gunjan Kumar
S. Bishnoi
Ravinder Bhattoo
N. M. A. Krishnan
Sayan Ranu
AI4CE
PINN
32
22
0
10 Nov 2022
ODEs learn to walk: ODE-Net based data-driven modeling for crowd dynamics
Chen Cheng
Jinglai Li
19
0
0
18 Oct 2022
Approximation of nearly-periodic symplectic maps via structure-preserving neural networks
Valentin Duruisseaux
J. Burby
Q. Tang
28
11
0
11 Oct 2022
FINDE: Neural Differential Equations for Finding and Preserving Invariant Quantities
Takashi Matsubara
Takaharu Yaguchi
PINN
14
7
0
01 Oct 2022
Data-driven discovery of non-Newtonian astronomy via learning non-Euclidean Hamiltonian
Oswin So
Gongjie Li
Evangelos A. Theodorou
Molei Tao
AI4CE
15
3
0
30 Sep 2022
Learning Interpretable Dynamics from Images of a Freely Rotating 3D Rigid Body
J. Mason
Christine Allen-Blanchette
Nicholas Zolman
Elizabeth Davison
Naomi Ehrich Leonard
3DH
AI4CE
33
8
0
23 Sep 2022
Enhancing the Inductive Biases of Graph Neural ODE for Modeling Dynamical Systems
S. Bishnoi
Ravinder Bhattoo
Sayan Ranu
N. M. A. Krishnan
AI4CE
18
19
0
22 Sep 2022
Physics-Informed Machine Learning of Dynamical Systems for Efficient Bayesian Inference
Somayajulu L. N. Dhulipala
Yifeng Che
Michael D. Shields
30
0
0
19 Sep 2022
Bayesian Identification of Nonseparable Hamiltonian Systems Using Stochastic Dynamic Models
Harsh Sharma
Nicholas Galioto
Alex A. Gorodetsky
Boris Kramer
30
3
0
15 Sep 2022
Constants of motion network
M. F. Kasim
Yi Heng Lim
12
4
0
22 Aug 2022
Bayesian Inference with Latent Hamiltonian Neural Networks
Somayajulu L. N. Dhulipala
Yifeng Che
Michael D. Shields
BDL
31
3
0
12 Aug 2022
Robust and Safe Autonomous Navigation for Systems with Learned SE(3) Hamiltonian Dynamics
Zhichao Li
T. Duong
Nikolay A. Atanasov
11
1
0
22 Jul 2022
Human Trajectory Prediction via Neural Social Physics
Jiangbei Yue
Dinesh Manocha
He-Nan Wang
AI4CE
19
100
0
21 Jul 2022
Learning Deep Input-Output Stable Dynamics
Yuji Okamoto
Ryosuke Kojima
OOD
23
5
0
27 Jun 2022
ModLaNets: Learning Generalisable Dynamics via Modularity and Physical Inductive Bias
Yupu Lu
Shi-Min Lin
Guanqi Chen
Jia-Yu Pan
32
7
0
24 Jun 2022
Noisy Learning for Neural ODEs Acts as a Robustness Locus Widening
Martin Gonzalez
H. Hajri
Loic Cantat
M. Petreczky
27
1
0
16 Jun 2022
Pseudo-Hamiltonian Neural Networks with State-Dependent External Forces
Sølve Eidnes
Alexander J. Stasik
Camilla Sterud
Eivind Bøhn
S. Riemer-Sørensen
11
17
0
06 Jun 2022
Recognition Models to Learn Dynamics from Partial Observations with Neural ODEs
Mona Buisson-Fenet
V. Morgenthaler
Sebastian Trimpe
F. D. Meglio
43
6
0
25 May 2022
Neural Implicit Representations for Physical Parameter Inference from a Single Video
Florian Hofherr
Lukas Koestler
Florian Bernard
Daniel Cremers
AI4CE
34
9
0
29 Apr 2022
VPNets: Volume-preserving neural networks for learning source-free dynamics
Aiqing Zhu
Beibei Zhu
Jiawei Zhang
Yifa Tang
Jian-Dong Liu
26
3
0
29 Apr 2022
Continuous-time identification of dynamic state-space models by deep subspace encoding
G. Beintema
Maarten Schoukens
R. Tóth
15
11
0
20 Apr 2022
A dynamical systems based framework for dimension reduction
Ryeongkyung Yoon
Braxton Osting
11
1
0
18 Apr 2022
A Review of Machine Learning Methods Applied to Structural Dynamics and Vibroacoustic
Barbara Z Cunha
C. Droz
A. Zine
Stéphane Foulard
M. Ichchou
AI4CE
27
84
0
13 Apr 2022
Learning Trajectories of Hamiltonian Systems with Neural Networks
Katsiaryna Haitsiukevich
Alexander Ilin
17
4
0
11 Apr 2022
MultiAuto-DeepONet: A Multi-resolution Autoencoder DeepONet for Nonlinear Dimension Reduction, Uncertainty Quantification and Operator Learning of Forward and Inverse Stochastic Problems
Jiahao Zhang
Shiqi Zhang
Guang Lin
10
13
0
07 Apr 2022
When Physics Meets Machine Learning: A Survey of Physics-Informed Machine Learning
Chuizheng Meng
Sungyong Seo
Defu Cao
Sam Griesemer
Yan Liu
PINN
AI4CE
34
55
0
31 Mar 2022
Learning Neural Hamiltonian Dynamics: A Methodological Overview
Zhijie Chen
Mingquan Feng
Junchi Yan
H. Zha
AI4CE
19
15
0
28 Feb 2022
Neural Ordinary Differential Equations for Nonlinear System Identification
Aowabin Rahman
Ján Drgoňa
Aaron Tuor
J. Strube
25
22
0
28 Feb 2022
Input-to-State Stable Neural Ordinary Differential Equations with Applications to Transient Modeling of Circuits
Alan Yang
J. Xiong
Maxim Raginsky
E. Rosenbaum
AI4TS
16
4
0
14 Feb 2022
Deconstructing the Inductive Biases of Hamiltonian Neural Networks
Nate Gruver
Marc Finzi
Samuel Stanton
A. Wilson
AI4CE
13
39
0
10 Feb 2022
Spectrally Adapted Physics-Informed Neural Networks for Solving Unbounded Domain Problems
Mingtao Xia
Lucas Böttcher
T. Chou
16
19
0
06 Feb 2022
Learning Hamiltonians of constrained mechanical systems
E. Celledoni
A. Leone
Davide Murari
B. Owren
AI4CE
36
17
0
31 Jan 2022
Dissipative Hamiltonian Neural Networks: Learning Dissipative and Conservative Dynamics Separately
A. Sosanya
S. Greydanus
PINN
AI4CE
35
26
0
25 Jan 2022
Symplectic Momentum Neural Networks -- Using Discrete Variational Mechanics as a prior in Deep Learning
Saul Santos
Monica Ekal
R. Ventura
19
5
0
20 Jan 2022
Control of Dual-Sourcing Inventory Systems using Recurrent Neural Networks
Lucas Böttcher
Thomas Asikis
I. Fragkos
BDL
11
10
0
16 Jan 2022
Physics-guided Learning-based Adaptive Control on the SE(3) Manifold
T. Duong
Nikolay A. Atanasov
PINN
DRL
AI4CE
31
0
0
12 Jan 2022
Safe Autonomous Navigation for Systems with Learned SE(3) Hamiltonian Dynamics
Zhichao Li
T. Duong
Nikolay A. Atanasov
13
2
0
09 Dec 2021
Noether Networks: Meta-Learning Useful Conserved Quantities
Ferran Alet
Dylan D. Doblar
Allan Zhou
J. Tenenbaum
Kenji Kawaguchi
Chelsea Finn
65
26
0
06 Dec 2021
Learning Large-Time-Step Molecular Dynamics with Graph Neural Networks
Tian Zheng
Weihao Gao
Chong-Jun Wang
AI4CE
21
3
0
30 Nov 2021
Neural Symplectic Integrator with Hamiltonian Inductive Bias for the Gravitational
N
N
N
-body Problem
Maxwell X. Cai
Simon Portegies Zwart
Damian Podareanu
PINN
20
3
0
28 Nov 2021
Towards Conditional Generation of Minimal Action Potential Pathways for Molecular Dynamics
J. Cava
J. Vant
Nicholas Ho
Ankita Shulka
P. Turaga
Ross Maciejewski
A. Singharoy
AI4CE
20
2
0
28 Nov 2021
Characteristic Neural Ordinary Differential Equations
Xingzi Xu
Ali Hasan
Khalil Elkhalil
Jie Ding
Vahid Tarokh
BDL
21
3
0
25 Nov 2021
Physics-informed neural networks via stochastic Hamiltonian dynamics learning
Chandrajit L. Bajaj
Minh Nguyen
11
1
0
15 Nov 2021
SyMetric: Measuring the Quality of Learnt Hamiltonian Dynamics Inferred from Vision
I. Higgins
Peter Wirnsberger
Andrew Jaegle
Aleksandar Botev
37
7
0
10 Nov 2021
Previous
1
2
3
4
Next