ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1909.12552
  4. Cited By
Learning search spaces for Bayesian optimization: Another view of
  hyperparameter transfer learning

Learning search spaces for Bayesian optimization: Another view of hyperparameter transfer learning

27 September 2019
Valerio Perrone
Huibin Shen
Matthias Seeger
Cédric Archambeau
Rodolphe Jenatton
ArXivPDFHTML

Papers citing "Learning search spaces for Bayesian optimization: Another view of hyperparameter transfer learning"

18 / 18 papers shown
Title
Sequential Large Language Model-Based Hyper-parameter Optimization
Sequential Large Language Model-Based Hyper-parameter Optimization
Kanan Mahammadli
Seyda Ertekin
45
4
0
27 Oct 2024
Data-driven Prior Learning for Bayesian Optimisation
Data-driven Prior Learning for Bayesian Optimisation
Sigrid Passano Hellan
Christopher G. Lucas
Nigel H. Goddard
26
0
0
24 Nov 2023
PED-ANOVA: Efficiently Quantifying Hyperparameter Importance in
  Arbitrary Subspaces
PED-ANOVA: Efficiently Quantifying Hyperparameter Importance in Arbitrary Subspaces
Shuhei Watanabe
Archit Bansal
Frank Hutter
32
12
0
20 Apr 2023
Transfer Learning for Bayesian Optimization: A Survey
Transfer Learning for Bayesian Optimization: A Survey
Tianyi Bai
Yang Li
Yu Shen
Xinyi Zhang
Wentao Zhang
Bin Cui
BDL
37
29
0
12 Feb 2023
Speeding Up Multi-Objective Hyperparameter Optimization by Task
  Similarity-Based Meta-Learning for the Tree-Structured Parzen Estimator
Speeding Up Multi-Objective Hyperparameter Optimization by Task Similarity-Based Meta-Learning for the Tree-Structured Parzen Estimator
Shuhei Watanabe
Noor H. Awad
Masaki Onishi
Frank Hutter
31
8
0
13 Dec 2022
HPC Storage Service Autotuning Using Variational-Autoencoder-Guided
  Asynchronous Bayesian Optimization
HPC Storage Service Autotuning Using Variational-Autoencoder-Guided Asynchronous Bayesian Optimization
Matthieu Dorier
Romain Egele
Prasanna Balaprakash
Jaehoon Koo
Sandeep Madireddy
Srinivasan Ramesh
A. Malony
R. Ross
14
9
0
03 Oct 2022
TransBO: Hyperparameter Optimization via Two-Phase Transfer Learning
TransBO: Hyperparameter Optimization via Two-Phase Transfer Learning
Yang Li
Yu Shen
Huaijun Jiang
Wentao Zhang
Zhi-Xin Yang
Ce Zhang
Bin Cui
20
15
0
06 Jun 2022
Transfer Learning based Search Space Design for Hyperparameter Tuning
Transfer Learning based Search Space Design for Hyperparameter Tuning
Yang Li
Yu Shen
Huaijun Jiang
Tianyi Bai
Wentao Zhang
Ce Zhang
Bin Cui
30
13
0
06 Jun 2022
ODBO: Bayesian Optimization with Search Space Prescreening for Directed
  Protein Evolution
ODBO: Bayesian Optimization with Search Space Prescreening for Directed Protein Evolution
Lixue Cheng
Ziyi Yang
Chang-Yu Hsieh
Ben Liao
Shengyu Zhang
25
6
0
19 May 2022
Positive-Unlabeled Domain Adaptation
Positive-Unlabeled Domain Adaptation
Jonas Sonntag
Gunnar Behrens
Lars Schmidt-Thieme
8
2
0
11 Feb 2022
FLoRA: Single-shot Hyper-parameter Optimization for Federated Learning
FLoRA: Single-shot Hyper-parameter Optimization for Federated Learning
Yi Zhou
Parikshit Ram
Theodoros Salonidis
Nathalie Baracaldo
Horst Samulowitz
Heiko Ludwig
AI4CE
29
25
0
15 Dec 2021
Scalable One-Pass Optimisation of High-Dimensional Weight-Update
  Hyperparameters by Implicit Differentiation
Scalable One-Pass Optimisation of High-Dimensional Weight-Update Hyperparameters by Implicit Differentiation
Ross M. Clarke
E. T. Oldewage
José Miguel Hernández-Lobato
26
9
0
20 Oct 2021
A multi-objective perspective on jointly tuning hardware and
  hyperparameters
A multi-objective perspective on jointly tuning hardware and hyperparameters
David Salinas
Valerio Perrone
Olivier Cruchant
Cédric Archambeau
24
13
0
10 Jun 2021
JUMBO: Scalable Multi-task Bayesian Optimization using Offline Data
JUMBO: Scalable Multi-task Bayesian Optimization using Offline Data
Kourosh Hakhamaneshi
Pieter Abbeel
Vladimir M. Stojanović
Aditya Grover
22
10
0
02 Jun 2021
Amazon SageMaker Automatic Model Tuning: Scalable Gradient-Free
  Optimization
Amazon SageMaker Automatic Model Tuning: Scalable Gradient-Free Optimization
Valerio Perrone
Huibin Shen
Aida Zolic
I. Shcherbatyi
Amr Ahmed
...
Barbara Pogorzelska
Miroslav Miladinovic
K. Kenthapadi
Matthias Seeger
Cédric Archambeau
13
16
0
15 Dec 2020
Resonance: Replacing Software Constants with Context-Aware Models in
  Real-time Communication
Resonance: Replacing Software Constants with Context-Aware Models in Real-time Communication
J. Gupchup
A. Aazami
Yaran Fan
Senja Filipi
Tom Finley
...
D. Perednya
Sriram Srinivasan
John Langford
Ross Cutler
J. Gehrke
OffRL
19
1
0
23 Nov 2020
An Asymptotically Optimal Multi-Armed Bandit Algorithm and
  Hyperparameter Optimization
An Asymptotically Optimal Multi-Armed Bandit Algorithm and Hyperparameter Optimization
Yimin Huang
Yujun Li
Hanrong Ye
Zhenguo Li
Zhihua Zhang
22
7
0
11 Jul 2020
Practical Transfer Learning for Bayesian Optimization
Practical Transfer Learning for Bayesian Optimization
Matthias Feurer
Benjamin Letham
Frank Hutter
E. Bakshy
50
34
0
06 Feb 2018
1