Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1909.13789
Cited By
Hamiltonian Generative Networks
30 September 2019
Peter Toth
Danilo Jimenez Rezende
Andrew Jaegle
S. Racanière
Aleksandar Botev
I. Higgins
BDL
DRL
AI4CE
GAN
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Hamiltonian Generative Networks"
46 / 46 papers shown
Title
Hamiltonian Normalizing Flows as kinetic PDE solvers: application to the 1D Vlasov-Poisson Equations
Vincent Souveton
Sébastien Terrana
41
0
0
07 May 2025
Unsupervised Representation Learning from Sparse Transformation Analysis
Yue Song
Thomas Anderson Keller
Yisong Yue
Pietro Perona
Max Welling
DRL
29
0
0
07 Oct 2024
Learning Physics From Video: Unsupervised Physical Parameter Estimation for Continuous Dynamical Systems
Alejandro Castañeda Garcia
J. C. V. Gemert
Daan Brinks
Nergis Tömen
38
0
0
02 Oct 2024
Port-Hamiltonian Neural ODE Networks on Lie Groups For Robot Dynamics Learning and Control
T. Duong
Abdullah Altawaitan
Jason Stanley
Nikolay A. Atanasov
28
10
0
17 Jan 2024
Hybrid Modeling Design Patterns
Maja Rudolph
Stefan Kurz
Barbara Rakitsch
AI4CE
31
8
0
29 Dec 2023
Hamiltonian GAN
Christine Allen-Blanchette
GAN
AI4CE
29
1
0
22 Aug 2023
Physics-Informed Learning Using Hamiltonian Neural Networks with Output Error Noise Models
Sarvin Moradi
N. Jaensson
Roland Tóth
Maarten Schoukens
PINN
30
3
0
02 May 2023
Fixed-kinetic Neural Hamiltonian Flows for enhanced interpretability and reduced complexity
Vincent Souveton
Arnaud Guillin
J. Jasche
G. Lavaux
Manon Michel
20
3
0
03 Feb 2023
Compositional Learning of Dynamical System Models Using Port-Hamiltonian Neural Networks
Cyrus Neary
Ufuk Topcu
PINN
AI4CE
11
12
0
01 Dec 2022
Knowledge-augmented Deep Learning and Its Applications: A Survey
Zijun Cui
Tian Gao
Kartik Talamadupula
Qiang Ji
25
18
0
30 Nov 2022
Neural Langevin Dynamics: towards interpretable Neural Stochastic Differential Equations
Simon Koop
M. Peletier
J. Portegies
Vlado Menkovski
DiffM
27
1
0
17 Nov 2022
Port-metriplectic neural networks: thermodynamics-informed machine learning of complex physical systems
Quercus Hernandez
Alberto Badías
Francisco Chinesta
Elías Cueto
PINN
AI4CE
27
13
0
03 Nov 2022
Theoretical Guarantees for Permutation-Equivariant Quantum Neural Networks
Louis Schatzki
Martín Larocca
Quynh T. Nguyen
F. Sauvage
M. Cerezo
31
84
0
18 Oct 2022
Learning Interpretable Dynamics from Images of a Freely Rotating 3D Rigid Body
J. Mason
Christine Allen-Blanchette
Nicholas Zolman
Elizabeth Davison
Naomi Ehrich Leonard
3DH
AI4CE
38
8
0
23 Sep 2022
Constants of motion network
M. F. Kasim
Yi Heng Lim
23
4
0
22 Aug 2022
Thermodynamics of learning physical phenomena
Elías Cueto
Francisco Chinesta
AI4CE
25
22
0
26 Jul 2022
Lagrangian Density Space-Time Deep Neural Network Topology
B. Bishnoi
PINN
22
1
0
30 Jun 2022
Neural Implicit Representations for Physical Parameter Inference from a Single Video
Florian Hofherr
Lukas Koestler
Florian Bernard
Daniel Cremers
AI4CE
37
9
0
29 Apr 2022
A Review of Machine Learning Methods Applied to Structural Dynamics and Vibroacoustic
Barbara Z Cunha
C. Droz
A. Zine
Stéphane Foulard
M. Ichchou
AI4CE
29
84
0
13 Apr 2022
When Physics Meets Machine Learning: A Survey of Physics-Informed Machine Learning
Chuizheng Meng
Sungyong Seo
Defu Cao
Sam Griesemer
Yan Liu
PINN
AI4CE
36
55
0
31 Mar 2022
Learning Neural Hamiltonian Dynamics: A Methodological Overview
Zhijie Chen
Mingquan Feng
Junchi Yan
H. Zha
AI4CE
19
15
0
28 Feb 2022
Reconstruction of observed mechanical motions with Artificial Intelligence tools
Antal Jakovác
M. T. Kurbucz
Péter Pósfay
9
8
0
23 Feb 2022
Dissipative Hamiltonian Neural Networks: Learning Dissipative and Conservative Dynamics Separately
A. Sosanya
S. Greydanus
PINN
AI4CE
38
27
0
25 Jan 2022
Learning Large-Time-Step Molecular Dynamics with Graph Neural Networks
Tian Zheng
Weihao Gao
Chong-Jun Wang
AI4CE
28
3
0
30 Nov 2021
Characteristic Neural Ordinary Differential Equations
Xingzi Xu
Ali Hasan
Khalil Elkhalil
Jie Ding
Vahid Tarokh
BDL
23
3
0
25 Nov 2021
Physics-enhanced Neural Networks in the Small Data Regime
Jonas Eichelsdörfer
Sebastian Kaltenbach
P. Koutsourelakis
AI4CE
PINN
12
5
0
19 Nov 2021
SyMetric: Measuring the Quality of Learnt Hamiltonian Dynamics Inferred from Vision
I. Higgins
Peter Wirnsberger
Andrew Jaegle
Aleksandar Botev
37
7
0
10 Nov 2021
Which priors matter? Benchmarking models for learning latent dynamics
Aleksandar Botev
Andrew Jaegle
Peter Wirnsberger
Daniel Hennes
I. Higgins
AI4CE
27
28
0
09 Nov 2021
Constructing Neural Network-Based Models for Simulating Dynamical Systems
Christian Møldrup Legaard
Thomas Schranz
G. Schweiger
Ján Drgovna
Basak Falay
C. Gomes
Alexandros Iosifidis
M. Abkar
P. Larsen
PINN
AI4CE
28
93
0
02 Nov 2021
Kinematically consistent recurrent neural networks for learning inverse problems in wave propagation
Wrik Mallik
R. Jaiman
J. Jelovica
AI4CE
25
3
0
08 Oct 2021
Structure-preserving Sparse Identification of Nonlinear Dynamics for Data-driven Modeling
Kookjin Lee
Nathaniel Trask
P. Stinis
32
24
0
11 Sep 2021
Port-Hamiltonian Neural Networks for Learning Explicit Time-Dependent Dynamical Systems
Shaan Desai
M. Mattheakis
David Sondak
P. Protopapas
Stephen J. Roberts
AI4CE
25
43
0
16 Jul 2021
Machine learning structure preserving brackets for forecasting irreversible processes
Kookjin Lee
Nathaniel Trask
P. Stinis
AI4CE
36
42
0
23 Jun 2021
Symplectic Learning for Hamiltonian Neural Networks
M. David
Florian Méhats
13
34
0
22 Jun 2021
Learning Deep Energy Shaping Policies for Stability-Guaranteed Manipulation
S. A. Khader
Hang Yin
Pietro Falco
Danica Kragic
6
12
0
30 Mar 2021
The Hintons in your Neural Network: a Quantum Field Theory View of Deep Learning
Roberto Bondesan
Max Welling
42
7
0
08 Mar 2021
Adaptable Hamiltonian neural networks
Chen-Di Han
Bryan Glaz
Mulugeta Haile
Y. Lai
AI4TS
22
25
0
25 Feb 2021
Physics-Integrated Variational Autoencoders for Robust and Interpretable Generative Modeling
Naoya Takeishi
Alexandros Kalousis
DRL
AI4CE
24
54
0
25 Feb 2021
Augmenting Physical Models with Deep Networks for Complex Dynamics Forecasting
Yuan Yin
Vincent Le Guen
Jérémie Donà
Emmanuel de Bézenac
Ibrahim Ayed
Nicolas Thome
Patrick Gallinari
AI4CE
PINN
30
132
0
09 Oct 2020
Learning Thermodynamically Stable and Galilean Invariant Partial Differential Equations for Non-equilibrium Flows
Juntao Huang
Zhiting Ma
Y. Zhou
W. Yong
AI4CE
27
16
0
28 Sep 2020
TorchDyn: A Neural Differential Equations Library
Michael Poli
Stefano Massaroli
Atsushi Yamashita
Hajime Asama
Jinkyoo Park
AI4CE
16
24
0
20 Sep 2020
Learning Physical Constraints with Neural Projections
Shuqi Yang
Xingzhe He
Bo Zhu
3DV
AI4CE
33
25
0
23 Jun 2020
Lagrangian Neural Networks
M. Cranmer
S. Greydanus
Stephan Hoyer
Peter W. Battaglia
D. Spergel
S. Ho
PINN
130
424
0
10 Mar 2020
Stochastic Normalizing Flows
Hao Wu
Jonas Köhler
Frank Noé
54
176
0
16 Feb 2020
SympNets: Intrinsic structure-preserving symplectic networks for identifying Hamiltonian systems
Pengzhan Jin
Zhen Zhang
Aiqing Zhu
Yifa Tang
George Karniadakis
16
21
0
11 Jan 2020
Machine learning and serving of discrete field theories -- when artificial intelligence meets the discrete universe
H. Qin
24
30
0
22 Oct 2019
1