Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1910.00019
Cited By
Non-Gaussian processes and neural networks at finite widths
30 September 2019
Sho Yaida
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Non-Gaussian processes and neural networks at finite widths"
28 / 28 papers shown
Title
Deep Neural Nets as Hamiltonians
Mike Winer
Boris Hanin
157
0
0
31 Mar 2025
Equivariant Neural Tangent Kernels
Philipp Misof
Pan Kessel
Jan E. Gerken
64
0
0
10 Jun 2024
Bayesian RG Flow in Neural Network Field Theories
Jessica N. Howard
Marc S. Klinger
Anindita Maiti
A. G. Stapleton
68
1
0
27 May 2024
Random ReLU Neural Networks as Non-Gaussian Processes
Rahul Parhi
Pakshal Bohra
Ayoub El Biari
Mehrsa Pourya
Michael Unser
63
1
0
16 May 2024
A theory of data variability in Neural Network Bayesian inference
Javed Lindner
David Dahmen
Michael Krämer
M. Helias
BDL
32
1
0
31 Jul 2023
Quantitative CLTs in Deep Neural Networks
Stefano Favaro
Boris Hanin
Domenico Marinucci
I. Nourdin
G. Peccati
BDL
33
11
0
12 Jul 2023
Dynamics of Finite Width Kernel and Prediction Fluctuations in Mean Field Neural Networks
Blake Bordelon
Cengiz Pehlevan
MLT
38
29
0
06 Apr 2023
Bayes-optimal Learning of Deep Random Networks of Extensive-width
Hugo Cui
Florent Krzakala
Lenka Zdeborová
BDL
20
35
0
01 Feb 2023
Catapult Dynamics and Phase Transitions in Quadratic Nets
David Meltzer
Junyu Liu
27
9
0
18 Jan 2023
A Solvable Model of Neural Scaling Laws
A. Maloney
Daniel A. Roberts
J. Sully
36
51
0
30 Oct 2022
Fast Finite Width Neural Tangent Kernel
Roman Novak
Jascha Narain Sohl-Dickstein
S. Schoenholz
AAML
22
53
0
17 Jun 2022
Wide Bayesian neural networks have a simple weight posterior: theory and accelerated sampling
Jiri Hron
Roman Novak
Jeffrey Pennington
Jascha Narain Sohl-Dickstein
UQCV
BDL
48
6
0
15 Jun 2022
Gaussian Pre-Activations in Neural Networks: Myth or Reality?
Pierre Wolinski
Julyan Arbel
AI4CE
73
8
0
24 May 2022
Self-Consistent Dynamical Field Theory of Kernel Evolution in Wide Neural Networks
Blake Bordelon
Cengiz Pehlevan
MLT
40
78
0
19 May 2022
Analytic theory for the dynamics of wide quantum neural networks
Junyu Liu
K. Najafi
Kunal Sharma
F. Tacchino
Liang Jiang
Antonio Mezzacapo
27
52
0
30 Mar 2022
Contrasting random and learned features in deep Bayesian linear regression
Jacob A. Zavatone-Veth
William L. Tong
Cengiz Pehlevan
BDL
MLT
28
26
0
01 Mar 2022
Separation of Scales and a Thermodynamic Description of Feature Learning in Some CNNs
Inbar Seroussi
Gadi Naveh
Zohar Ringel
33
50
0
31 Dec 2021
Rate of Convergence of Polynomial Networks to Gaussian Processes
Adam Klukowski
10
14
0
04 Nov 2021
Conditional Deep Gaussian Processes: empirical Bayes hyperdata learning
Chi-Ken Lu
Patrick Shafto
BDL
27
4
0
01 Oct 2021
Nonperturbative renormalization for the neural network-QFT correspondence
Harold Erbin
Vincent Lahoche
D. O. Samary
41
30
0
03 Aug 2021
Dataset Distillation with Infinitely Wide Convolutional Networks
Timothy Nguyen
Roman Novak
Lechao Xiao
Jaehoon Lee
DD
51
229
0
27 Jul 2021
Random Neural Networks in the Infinite Width Limit as Gaussian Processes
Boris Hanin
BDL
32
43
0
04 Jul 2021
A self consistent theory of Gaussian Processes captures feature learning effects in finite CNNs
Gadi Naveh
Zohar Ringel
SSL
MLT
36
31
0
08 Jun 2021
Explaining Neural Scaling Laws
Yasaman Bahri
Ethan Dyer
Jared Kaplan
Jaehoon Lee
Utkarsh Sharma
27
250
0
12 Feb 2021
Memorizing without overfitting: Bias, variance, and interpolation in over-parameterized models
J. Rocks
Pankaj Mehta
18
41
0
26 Oct 2020
Mixed Moments for the Product of Ginibre Matrices
Nick Halmagyi
Shailesh Lal
14
2
0
20 Jul 2020
Predicting the outputs of finite deep neural networks trained with noisy gradients
Gadi Naveh
Oded Ben-David
H. Sompolinsky
Zohar Ringel
19
20
0
02 Apr 2020
Quantifying the probable approximation error of probabilistic inference programs
Marco F. Cusumano-Towner
Vikash K. Mansinghka
33
5
0
31 May 2016
1