ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1910.00942
  4. Cited By
Keep It Simple: Graph Autoencoders Without Graph Convolutional Networks

Keep It Simple: Graph Autoencoders Without Graph Convolutional Networks

2 October 2019
Guillaume Salha-Galvan
Romain Hennequin
Michalis Vazirgiannis
    GNN
    BDL
ArXivPDFHTML

Papers citing "Keep It Simple: Graph Autoencoders Without Graph Convolutional Networks"

4 / 4 papers shown
Title
A Generative Framework for Predictive Modeling of Multiple Chronic Conditions Using Graph Variational Autoencoder and Bandit-Optimized Graph Neural Network
A Generative Framework for Predictive Modeling of Multiple Chronic Conditions Using Graph Variational Autoencoder and Bandit-Optimized Graph Neural Network
Julian Carvajal Rico
A. Alaeddini
Syed Hasib Akhter Faruqui
S. Fisher-Hoch
J. McCormick
63
0
0
13 Mar 2025
A Review of Graph-Powered Data Quality Applications for IoT Monitoring Sensor Networks
A Review of Graph-Powered Data Quality Applications for IoT Monitoring Sensor Networks
Pau Ferrer-Cid
Jose M. Barcelo-Ordinas
J. García-Vidal
37
2
0
28 Oct 2024
Node Embeddings and Exact Low-Rank Representations of Complex Networks
Node Embeddings and Exact Low-Rank Representations of Complex Networks
Sudhanshu Chanpuriya
Cameron Musco
Konstantinos Sotiropoulos
Charalampos E. Tsourakakis
BDL
6
33
0
10 Jun 2020
Junction Tree Variational Autoencoder for Molecular Graph Generation
Junction Tree Variational Autoencoder for Molecular Graph Generation
Wengong Jin
Regina Barzilay
Tommi Jaakkola
211
1,329
0
12 Feb 2018
1