Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1910.01671
Cited By
v1
v2 (latest)
Pure and Spurious Critical Points: a Geometric Study of Linear Networks
3 October 2019
Matthew Trager
Kathlén Kohn
Joan Bruna
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Pure and Spurious Critical Points: a Geometric Study of Linear Networks"
19 / 19 papers shown
Title
Understanding Learning Invariance in Deep Linear Networks
Hao Duan
Guido Montúfar
25
0
0
16 Jun 2025
Impact of Bottleneck Layers and Skip Connections on the Generalization of Linear Denoising Autoencoders
Jonghyun Ham
Maximilian Fleissner
Debarghya Ghoshdastidar
AI4CE
33
0
0
30 May 2025
Algebra Unveils Deep Learning -- An Invitation to Neuroalgebraic Geometry
Giovanni Luca Marchetti
Vahid Shahverdi
Stefano Mereta
Matthew Trager
Kathlén Kohn
153
2
0
31 Jan 2025
Gradient flow in parameter space is equivalent to linear interpolation in output space
Thomas Chen
Patrícia Muñoz Ewald
72
1
0
02 Aug 2024
On the Stability of Gradient Descent for Large Learning Rate
Alexandru Cruaciun
Debarghya Ghoshdastidar
MLT
ODL
22
0
0
20 Feb 2024
Neural Rank Collapse: Weight Decay and Small Within-Class Variability Yield Low-Rank Bias
Emanuele Zangrando
Piero Deidda
Simone Brugiapaglia
Nicola Guglielmi
Francesco Tudisco
83
8
0
06 Feb 2024
Algebraic Complexity and Neurovariety of Linear Convolutional Networks
Vahid Shahverdi
112
4
0
29 Jan 2024
Geometry of Linear Neural Networks: Equivariance and Invariance under Permutation Groups
Kathlén Kohn
Anna-Laura Sattelberger
Vahid Shahverdi
97
4
0
24 Sep 2023
Function Space and Critical Points of Linear Convolutional Networks
Kathlén Kohn
Guido Montúfar
Vahid Shahverdi
Matthew Trager
85
14
0
12 Apr 2023
Critical Points and Convergence Analysis of Generative Deep Linear Networks Trained with Bures-Wasserstein Loss
Pierre Bréchet
Katerina Papagiannouli
Jing An
Guido Montúfar
82
4
0
06 Mar 2023
Functional dimension of feedforward ReLU neural networks
J. E. Grigsby
Kathryn A. Lindsey
R. Meyerhoff
Chen-Chun Wu
60
12
0
08 Sep 2022
Low-Pass Filtering SGD for Recovering Flat Optima in the Deep Learning Optimization Landscape
Devansh Bisla
Jing Wang
A. Choromańska
104
37
0
20 Jan 2022
The Geometry of Memoryless Stochastic Policy Optimization in Infinite-Horizon POMDPs
Johannes Muller
Guido Montúfar
90
8
0
14 Oct 2021
Beyond Linear Algebra
Bernd Sturmfels
34
9
0
21 Aug 2021
Convergence of gradient descent for learning linear neural networks
Gabin Maxime Nguegnang
Holger Rauhut
Ulrich Terstiege
MLT
61
18
0
04 Aug 2021
Geometry of Linear Convolutional Networks
Kathlén Kohn
Thomas Merkh
Guido Montúfar
Matthew Trager
115
20
0
03 Aug 2021
The loss landscape of deep linear neural networks: a second-order analysis
El Mehdi Achour
Franccois Malgouyres
Sébastien Gerchinovitz
ODL
65
10
0
28 Jul 2021
Learning deep linear neural networks: Riemannian gradient flows and convergence to global minimizers
B. Bah
Holger Rauhut
Ulrich Terstiege
Michael Westdickenberg
MLT
79
66
0
12 Oct 2019
On the Expressive Power of Deep Polynomial Neural Networks
Joe Kileel
Matthew Trager
Joan Bruna
83
83
0
29 May 2019
1