ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1910.01739
  4. Cited By
Scalable Global Optimization via Local Bayesian Optimization

Scalable Global Optimization via Local Bayesian Optimization

3 October 2019
Samyam Rajbhandari
Michael Pearce
J. Gardner
Ryan D. Turner
Matthias Poloczek
ArXivPDFHTML

Papers citing "Scalable Global Optimization via Local Bayesian Optimization"

33 / 233 papers shown
Title
Revisiting Bayesian Optimization in the light of the COCO benchmark
Revisiting Bayesian Optimization in the light of the COCO benchmark
Rodolphe Le Riche
Victor Picheny
14
26
0
30 Mar 2021
Learning How to Optimize Black-Box Functions With Extreme Limits on the
  Number of Function Evaluations
Learning How to Optimize Black-Box Functions With Extreme Limits on the Number of Function Evaluations
Carlos Ansótegui
Meinolf Sellmann
Tapan Shah
Kevin Tierney
11
4
0
18 Mar 2021
A Scalable Gradient-Free Method for Bayesian Experimental Design with
  Implicit Models
A Scalable Gradient-Free Method for Bayesian Experimental Design with Implicit Models
Jiaxin Zhang
Sirui Bi
Guannan Zhang
16
9
0
14 Mar 2021
High-Dimensional Bayesian Optimization with Sparse Axis-Aligned
  Subspaces
High-Dimensional Bayesian Optimization with Sparse Axis-Aligned Subspaces
David Eriksson
M. Jankowiak
26
134
0
27 Feb 2021
DEUP: Direct Epistemic Uncertainty Prediction
DEUP: Direct Epistemic Uncertainty Prediction
Salem Lahlou
Moksh Jain
Hadi Nekoei
V. Butoi
Paul Bertin
Jarrid Rector-Brooks
Maksym Korablyov
Yoshua Bengio
PER
UQLM
UQCV
UD
200
81
0
16 Feb 2021
Online hyperparameter optimization by real-time recurrent learning
Online hyperparameter optimization by real-time recurrent learning
Daniel Jiwoong Im
Cristina Savin
Kyunghyun Cho
11
7
0
15 Feb 2021
Derivative-Free Reinforcement Learning: A Review
Derivative-Free Reinforcement Learning: A Review
Hong Qian
Yang Yu
OffRL
6
42
0
10 Feb 2021
OPT-GAN: A Broad-Spectrum Global Optimizer for Black-box Problems by
  Learning Distribution
OPT-GAN: A Broad-Spectrum Global Optimizer for Black-box Problems by Learning Distribution
Minfang Lu
Shuai Ning
Shuangrong Liu
Fengyang Sun
Bo Zhang
Bo Yang
Linshan Wang
23
4
0
07 Feb 2021
TREGO: a Trust-Region Framework for Efficient Global Optimization
TREGO: a Trust-Region Framework for Efficient Global Optimization
Youssef Diouane
Victor Picheny
Rodolophe Le Riche
Alexandre Scotto Di Perrotolo
25
33
0
18 Jan 2021
CobBO: Coordinate Backoff Bayesian Optimization with Two-Stage Kernels
CobBO: Coordinate Backoff Bayesian Optimization with Two-Stage Kernels
Jian Tan
Niv Nayman
Mengchang Wang
8
4
0
13 Jan 2021
High-Dimensional Bayesian Optimization via Tree-Structured Additive
  Models
High-Dimensional Bayesian Optimization via Tree-Structured Additive Models
E. Han
Ishank Arora
Jonathan Scarlett
TPM
AI4CE
17
17
0
24 Dec 2020
Solving Black-Box Optimization Challenge via Learning Search Space
  Partition for Local Bayesian Optimization
Solving Black-Box Optimization Challenge via Learning Search Space Partition for Local Bayesian Optimization
Mikita Sazanovich
A. Nikolskaya
Yury Belousov
A. Shpilman
9
14
0
18 Dec 2020
GPU Accelerated Exhaustive Search for Optimal Ensemble of Black-Box
  Optimization Algorithms
GPU Accelerated Exhaustive Search for Optimal Ensemble of Black-Box Optimization Algorithms
Jiwei Liu
Bojan Tunguz
Gilberto Titericz
11
8
0
08 Dec 2020
HEBO Pushing The Limits of Sample-Efficient Hyperparameter Optimisation
HEBO Pushing The Limits of Sample-Efficient Hyperparameter Optimisation
Alexander I. Cowen-Rivers
Wenlong Lyu
Rasul Tutunov
Zhi Wang
Antoine Grosnit
...
A. Maraval
Hao Jianye
Jun Wang
Jan Peters
H. Ammar
27
74
0
07 Dec 2020
Adaptive Local Bayesian Optimization Over Multiple Discrete Variables
Adaptive Local Bayesian Optimization Over Multiple Discrete Variables
Taehyeon Kim
Jaeyeon Ahn
Nakyil Kim
Seyoung Yun
23
3
0
07 Dec 2020
Thermodynamic Consistent Neural Networks for Learning Material
  Interfacial Mechanics
Thermodynamic Consistent Neural Networks for Learning Material Interfacial Mechanics
Jiaxin Zhang
Congjie Wei
Chenglin Wu
AI4CE
PINN
11
7
0
28 Nov 2020
Cautious Bayesian Optimization for Efficient and Scalable Policy Search
Cautious Bayesian Optimization for Efficient and Scalable Policy Search
Lukas P. Frohlich
M. Zeilinger
Edgar D. Klenske
OffRL
17
13
0
18 Nov 2020
AdaDGS: An adaptive black-box optimization method with a nonlocal
  directional Gaussian smoothing gradient
AdaDGS: An adaptive black-box optimization method with a nonlocal directional Gaussian smoothing gradient
Hoang Tran
Guannan Zhang
27
8
0
03 Nov 2020
Sub-linear Regret Bounds for Bayesian Optimisation in Unknown Search
  Spaces
Sub-linear Regret Bounds for Bayesian Optimisation in Unknown Search Spaces
Hung The Tran
Sunil R. Gupta
Santu Rana
Huong Ha
Svetha Venkatesh
21
6
0
05 Sep 2020
On the implementation of a global optimization method for mixed-variable
  problems
On the implementation of a global optimization method for mixed-variable problems
G. Nannicini
9
19
0
04 Sep 2020
Learning Search Space Partition for Black-box Optimization using Monte
  Carlo Tree Search
Learning Search Space Partition for Black-box Optimization using Monte Carlo Tree Search
Linnan Wang
Rodrigo Fonseca
Yuandong Tian
27
126
0
01 Jul 2020
Fast Matrix Square Roots with Applications to Gaussian Processes and
  Bayesian Optimization
Fast Matrix Square Roots with Applications to Gaussian Processes and Bayesian Optimization
Geoff Pleiss
M. Jankowiak
David Eriksson
Anil Damle
J. Gardner
17
43
0
19 Jun 2020
An adaptive stochastic gradient-free approach for high-dimensional
  blackbox optimization
An adaptive stochastic gradient-free approach for high-dimensional blackbox optimization
Anton Dereventsov
Clayton Webster
Joseph Daws
6
10
0
18 Jun 2020
Scalable Thompson Sampling using Sparse Gaussian Process Models
Scalable Thompson Sampling using Sparse Gaussian Process Models
Sattar Vakili
Henry B. Moss
A. Artemev
Vincent Dutordoir
Victor Picheny
6
34
0
09 Jun 2020
Time Efficiency in Optimization with a Bayesian-Evolutionary Algorithm
Time Efficiency in Optimization with a Bayesian-Evolutionary Algorithm
Gongjin Lan
Jakub M. Tomczak
D. Roijers
A. E. Eiben
82
79
0
04 May 2020
ENTMOOT: A Framework for Optimization over Ensemble Tree Models
ENTMOOT: A Framework for Optimization over Ensemble Tree Models
Alexander Thebelt
Jan Kronqvist
Miten Mistry
Robert M. Lee
Nathan Sudermann-Merx
Ruth Misener
21
54
0
10 Mar 2020
Practical Bayesian Optimization of Objectives with Conditioning
  Variables
Practical Bayesian Optimization of Objectives with Conditioning Variables
Michael Pearce
Janis Klaise
Matthew J. Groves
10
1
0
23 Feb 2020
Scalable Constrained Bayesian Optimization
Scalable Constrained Bayesian Optimization
David Eriksson
Matthias Poloczek
25
95
0
20 Feb 2020
A Novel Evolution Strategy with Directional Gaussian Smoothing for
  Blackbox Optimization
A Novel Evolution Strategy with Directional Gaussian Smoothing for Blackbox Optimization
Jiaxin Zhang
Hoang Tran
Dan Lu
Guannan Zhang
11
17
0
07 Feb 2020
Re-Examining Linear Embeddings for High-Dimensional Bayesian
  Optimization
Re-Examining Linear Embeddings for High-Dimensional Bayesian Optimization
Benjamin Letham
Roberto Calandra
Akshara Rai
E. Bakshy
71
109
0
31 Jan 2020
Bayesian Quantile and Expectile Optimisation
Bayesian Quantile and Expectile Optimisation
Victor Picheny
Henry B. Moss
Léonard Torossian
N. Durrande
6
21
0
12 Jan 2020
Dynamic Subgoal-based Exploration via Bayesian Optimization
Dynamic Subgoal-based Exploration via Bayesian Optimization
Yijia Wang
Matthias Poloczek
Daniel R. Jiang
10
3
0
21 Oct 2019
Practical Transfer Learning for Bayesian Optimization
Practical Transfer Learning for Bayesian Optimization
Matthias Feurer
Benjamin Letham
Frank Hutter
E. Bakshy
40
34
0
06 Feb 2018
Previous
12345