Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1910.01842
Cited By
SELF: Learning to Filter Noisy Labels with Self-Ensembling
4 October 2019
Philipp Kratzer
Marc Toussaint
Thi Phuong Nhung Ngo
T. Nguyen
Jim Mainprice
Thomas Brox
NoLa
Re-assign community
ArXiv
PDF
HTML
Papers citing
"SELF: Learning to Filter Noisy Labels with Self-Ensembling"
50 / 172 papers shown
Title
Continual Learning on Noisy Data Streams via Self-Purified Replay
C. Kim
Jinseo Jeong
Sang-chul Moon
Gunhee Kim
CLL
32
39
0
14 Oct 2021
Fuzzy Overclustering: Semi-Supervised Classification of Fuzzy Labels with Overclustering and Inverse Cross-Entropy
Lars Schmarje
Johannes Brunger
M. Santarossa
Simon-Martin Schroder
R. Kiko
Reinhard Koch
39
17
0
13 Oct 2021
Consistency Regularization Can Improve Robustness to Label Noise
Erik Englesson
Hossein Azizpour
NoLa
86
20
0
04 Oct 2021
Robust Temporal Ensembling for Learning with Noisy Labels
Abel Brown
Benedikt D. Schifferer
R. DiPietro
NoLa
OOD
6
0
0
29 Sep 2021
Connecting Low-Loss Subspace for Personalized Federated Learning
S. Hahn
Minwoo Jeong
Junghye Lee
FedML
14
18
0
16 Sep 2021
Distantly-Supervised Named Entity Recognition with Noise-Robust Learning and Language Model Augmented Self-Training
Yu Meng
Yunyi Zhang
Jiaxin Huang
Xuan Wang
Yu Zhang
Heng Ji
Jiawei Han
45
69
0
10 Sep 2021
Knowing False Negatives: An Adversarial Training Method for Distantly Supervised Relation Extraction
Kailong Hao
Botao Yu
Wei Hu
17
18
0
05 Sep 2021
Robust Long-Tailed Learning under Label Noise
Tong Wei
Jiang-Xin Shi
Wei-Wei Tu
Yu-Feng Li
NoLa
17
50
0
26 Aug 2021
NGC: A Unified Framework for Learning with Open-World Noisy Data
Zhi-Fan Wu
Tong Wei
Jianwen Jiang
Chaojie Mao
Mingqian Tang
Yu-Feng Li
11
80
0
25 Aug 2021
Improving Distantly Supervised Relation Extraction with Self-Ensemble Noise Filtering
Tapas Nayak
Navonil Majumder
Soujanya Poria
11
7
0
22 Aug 2021
Confidence Adaptive Regularization for Deep Learning with Noisy Labels
Yangdi Lu
Yang Bo
Wenbo He
NoLa
20
10
0
18 Aug 2021
Co-learning: Learning from Noisy Labels with Self-supervision
Cheng Tan
Jun-Xiong Xia
Lirong Wu
Stan Z. Li
NoLa
68
116
0
05 Aug 2021
Understanding and Improving Early Stopping for Learning with Noisy Labels
Ying-Long Bai
Erkun Yang
Bo Han
Yanhua Yang
Jiatong Li
Yinian Mao
Gang Niu
Tongliang Liu
NoLa
25
206
0
30 Jun 2021
INN: A Method Identifying Clean-annotated Samples via Consistency Effect in Deep Neural Networks
Dongha Kim
Yongchan Choi
Kunwoong Kim
Yongdai Kim
NoLa
11
0
0
29 Jun 2021
Bayesian Statistics Guided Label Refurbishment Mechanism: Mitigating Label Noise in Medical Image Classification
Mengdi Gao
Ximeng Feng
Mufeng Geng
Zhe Jiang
Lei Zhu
Xiangxi Meng
Chuanqing Zhou
Qiushi Ren
Yanye Lu
BDL
NoLa
19
6
0
23 Jun 2021
Open-set Label Noise Can Improve Robustness Against Inherent Label Noise
Hongxin Wei
Lue Tao
Renchunzi Xie
Bo An
NoLa
16
83
0
21 Jun 2021
Influential Rank: A New Perspective of Post-training for Robust Model against Noisy Labels
Seulki Park
Hwanjun Song
Daeho Um
D. Jo
Sangdoo Yun
J. Choi
NoLa
19
0
0
14 Jun 2021
NRGNN: Learning a Label Noise-Resistant Graph Neural Network on Sparsely and Noisily Labeled Graphs
Enyan Dai
Charu C. Aggarwal
Suhang Wang
NoLa
25
114
0
08 Jun 2021
Instance Correction for Learning with Open-set Noisy Labels
Xiaobo Xia
Tongliang Liu
Bo Han
Mingming Gong
Jun Yu
Gang Niu
Masashi Sugiyama
NoLa
10
12
0
01 Jun 2021
Sample Selection with Uncertainty of Losses for Learning with Noisy Labels
Xiaobo Xia
Tongliang Liu
Bo Han
Mingming Gong
Jun Yu
Gang Niu
Masashi Sugiyama
NoLa
15
110
0
01 Jun 2021
Estimating Instance-dependent Bayes-label Transition Matrix using a Deep Neural Network
Shuo Yang
Erkun Yang
Bo Han
Yang Liu
Min Xu
Gang Niu
Tongliang Liu
NoLa
BDL
24
42
0
27 May 2021
Learning Robust Recommenders through Cross-Model Agreement
Yu-Xiang Wang
Xin Xin
Zaiqiao Meng
Xiangnan He
J. Jose
Fuli Feng
13
47
0
20 May 2021
Generalized Jensen-Shannon Divergence Loss for Learning with Noisy Labels
Erik Englesson
Hossein Azizpour
NoLa
26
103
0
10 May 2021
Estimating the electrical power output of industrial devices with end-to-end time-series classification in the presence of label noise
Andrea Castellani
Sebastian Schmitt
Barbara Hammer
NoLa
22
18
0
01 May 2021
A Framework using Contrastive Learning for Classification with Noisy Labels
Madalina Ciortan
R. Dupuis
Thomas Peel
VLM
NoLa
19
12
0
19 Apr 2021
On Universal Black-Box Domain Adaptation
Bin Deng
Yabin Zhang
Hui Tang
Changxing Ding
K. Jia
17
9
0
10 Apr 2021
A Theoretical Analysis of Learning with Noisily Labeled Data
Yi Tian Xu
Qi Qian
Hao Li
R. L. Jin
NoLa
23
0
0
08 Apr 2021
From Synthetic to Real: Unsupervised Domain Adaptation for Animal Pose Estimation
Chen Li
G. Lee
OOD
9
81
0
27 Mar 2021
Transform consistency for learning with noisy labels
Rumeng Yi
Yaping Huang
NoLa
14
4
0
25 Mar 2021
Approximating Instance-Dependent Noise via Instance-Confidence Embedding
Yivan Zhang
Masashi Sugiyama
31
8
0
25 Mar 2021
Co-matching: Combating Noisy Labels by Augmentation Anchoring
Yangdi Lu
Yang Bo
Wenbo He
NoLa
19
7
0
23 Mar 2021
On the Robustness of Monte Carlo Dropout Trained with Noisy Labels
Purvi Goel
Li Chen
NoLa
28
15
0
22 Mar 2021
ScanMix: Learning from Severe Label Noise via Semantic Clustering and Semi-Supervised Learning
Ragav Sachdeva
F. Cordeiro
Vasileios Belagiannis
Ian Reid
G. Carneiro
29
34
0
21 Mar 2021
Your Classifier can Secretly Suffice Multi-Source Domain Adaptation
Naveen Venkat
Jogendra Nath Kundu
D. K. Singh
Ambareesh Revanur
R. VenkateshBabu
17
69
0
20 Mar 2021
MetaLabelNet: Learning to Generate Soft-Labels from Noisy-Labels
G. Algan
ilkay Ulusoy
NoLa
11
12
0
19 Mar 2021
Ensemble Learning with Manifold-Based Data Splitting for Noisy Label Correction
Hao-Chiang Shao
Hsin-Chieh Wang
Weng-Tai Su
Chia-Wen Lin
NoLa
14
6
0
13 Mar 2021
LongReMix: Robust Learning with High Confidence Samples in a Noisy Label Environment
F. Cordeiro
Ragav Sachdeva
Vasileios Belagiannis
Ian Reid
G. Carneiro
NoLa
11
77
0
06 Mar 2021
Multiplicative Reweighting for Robust Neural Network Optimization
Noga Bar
Tomer Koren
Raja Giryes
OOD
NoLa
11
9
0
24 Feb 2021
Self-Supervised Noisy Label Learning for Source-Free Unsupervised Domain Adaptation
Weijie Chen
Luojun Lin
Shicai Yang
Di Xie
Shiliang Pu
Yueting Zhuang
Wenqi Ren
NoLa
SSL
25
57
0
23 Feb 2021
Deep Learning with Label Differential Privacy
Badih Ghazi
Noah Golowich
Ravi Kumar
Pasin Manurangsi
Chiyuan Zhang
39
144
0
11 Feb 2021
Understanding the Interaction of Adversarial Training with Noisy Labels
Jianing Zhu
Jingfeng Zhang
Bo Han
Tongliang Liu
Gang Niu
Hongxia Yang
Mohan S. Kankanhalli
Masashi Sugiyama
AAML
12
27
0
06 Feb 2021
Learning Noise Transition Matrix from Only Noisy Labels via Total Variation Regularization
Yivan Zhang
Gang Niu
Masashi Sugiyama
NoLa
28
78
0
04 Feb 2021
Provably End-to-end Label-Noise Learning without Anchor Points
Xuefeng Li
Tongliang Liu
Bo Han
Gang Niu
Masashi Sugiyama
NoLa
122
120
0
04 Feb 2021
Self-Adaptive Training: Bridging Supervised and Self-Supervised Learning
Lang Huang
Chaoning Zhang
Hongyang R. Zhang
SSL
20
24
0
21 Jan 2021
Robust Collaborative Learning with Noisy Labels
Mengying Sun
Jing Xing
B. Chen
Jiayu Zhou
NoLa
14
3
0
26 Dec 2020
Identifying Training Stop Point with Noisy Labeled Data
Sree Ram Kamabattula
V. Devarajan
Babak Namazi
G. Sankaranarayanan
NoLa
6
2
0
24 Dec 2020
How Does a Neural Network's Architecture Impact Its Robustness to Noisy Labels?
Jingling Li
Mozhi Zhang
Keyulu Xu
John P. Dickerson
Jimmy Ba
OOD
NoLa
22
19
0
23 Dec 2020
A Second-Order Approach to Learning with Instance-Dependent Label Noise
Zhaowei Zhu
Tongliang Liu
Yang Liu
NoLa
12
126
0
22 Dec 2020
Beyond Class-Conditional Assumption: A Primary Attempt to Combat Instance-Dependent Label Noise
Pengfei Chen
Junjie Ye
Guangyong Chen
Jingwei Zhao
Pheng-Ann Heng
NoLa
29
122
0
10 Dec 2020
MetaInfoNet: Learning Task-Guided Information for Sample Reweighting
Hongxin Wei
Lei Feng
R. Wang
Bo An
NoLa
17
6
0
09 Dec 2020
Previous
1
2
3
4
Next