ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1910.02008
  4. Cited By
Nonasymptotic estimates for Stochastic Gradient Langevin Dynamics under
  local conditions in nonconvex optimization

Nonasymptotic estimates for Stochastic Gradient Langevin Dynamics under local conditions in nonconvex optimization

4 October 2019
Ying Zhang
Ömer Deniz Akyildiz
Theodoros Damoulas
Sotirios Sabanis
ArXivPDFHTML

Papers citing "Nonasymptotic estimates for Stochastic Gradient Langevin Dynamics under local conditions in nonconvex optimization"

19 / 19 papers shown
Title
Random Reshuffling for Stochastic Gradient Langevin Dynamics
Luke Shaw
Peter A. Whalley
113
3
0
28 Jan 2025
Generalization Bounds for Label Noise Stochastic Gradient Descent
Generalization Bounds for Label Noise Stochastic Gradient Descent
Jung Eun Huh
Patrick Rebeschini
18
1
0
01 Nov 2023
Interacting Particle Langevin Algorithm for Maximum Marginal Likelihood Estimation
Interacting Particle Langevin Algorithm for Maximum Marginal Likelihood Estimation
Ö. Deniz Akyildiz
F. R. Crucinio
Mark Girolami
Tim Johnston
Sotirios Sabanis
40
12
0
23 Mar 2023
Non-asymptotic analysis of Langevin-type Monte Carlo algorithms
Non-asymptotic analysis of Langevin-type Monte Carlo algorithms
Shogo H. Nakakita
31
0
0
22 Mar 2023
Kinetic Langevin MCMC Sampling Without Gradient Lipschitz Continuity --
  the Strongly Convex Case
Kinetic Langevin MCMC Sampling Without Gradient Lipschitz Continuity -- the Strongly Convex Case
Tim Johnston
Iosif Lytras
Sotirios Sabanis
43
8
0
19 Jan 2023
Geometric ergodicity of SGLD via reflection coupling
Geometric ergodicity of SGLD via reflection coupling
Lei Li
Jian‐Guo Liu
Yuliang Wang
57
2
0
17 Jan 2023
Asynchronous Bayesian Learning over a Network
Asynchronous Bayesian Learning over a Network
Kinjal Bhar
H. Bai
Jemin George
Carl E. Busart
FedML
14
0
0
16 Nov 2022
A sharp uniform-in-time error estimate for Stochastic Gradient Langevin Dynamics
A sharp uniform-in-time error estimate for Stochastic Gradient Langevin Dynamics
Lei Li
Yuliang Wang
47
11
0
19 Jul 2022
Utilising the CLT Structure in Stochastic Gradient based Sampling :
  Improved Analysis and Faster Algorithms
Utilising the CLT Structure in Stochastic Gradient based Sampling : Improved Analysis and Faster Algorithms
Aniket Das
Dheeraj M. Nagaraj
Anant Raj
54
6
0
08 Jun 2022
Uniform Generalization Bound on Time and Inverse Temperature for
  Gradient Descent Algorithm and its Application to Analysis of Simulated
  Annealing
Uniform Generalization Bound on Time and Inverse Temperature for Gradient Descent Algorithm and its Application to Analysis of Simulated Annealing
Keisuke Suzuki
AI4CE
35
0
0
25 May 2022
Weak Convergence of Approximate reflection coupling and its Application
  to Non-convex Optimization
Weak Convergence of Approximate reflection coupling and its Application to Non-convex Optimization
Keisuke Suzuki
41
5
0
24 May 2022
Global convergence of optimized adaptive importance samplers
Global convergence of optimized adaptive importance samplers
Ömer Deniz Akyildiz
38
7
0
02 Jan 2022
Time-independent Generalization Bounds for SGLD in Non-convex Settings
Time-independent Generalization Bounds for SGLD in Non-convex Settings
Tyler Farghly
Patrick Rebeschini
35
22
0
25 Nov 2021
Statistical Finite Elements via Langevin Dynamics
Statistical Finite Elements via Langevin Dynamics
Ömer Deniz Akyildiz
Connor Duffin
Sotirios Sabanis
Mark Girolami
41
11
0
21 Oct 2021
Schr{ö}dinger-F{ö}llmer Sampler: Sampling without Ergodicity
Schr{ö}dinger-F{ö}llmer Sampler: Sampling without Ergodicity
Jian Huang
Yuling Jiao
Lican Kang
Xu Liao
Jin Liu
Yanyan Liu
40
27
0
21 Jun 2021
Polygonal Unadjusted Langevin Algorithms: Creating stable and efficient
  adaptive algorithms for neural networks
Polygonal Unadjusted Langevin Algorithms: Creating stable and efficient adaptive algorithms for neural networks
Dong-Young Lim
Sotirios Sabanis
44
11
0
28 May 2021
Taming neural networks with TUSLA: Non-convex learning via adaptive
  stochastic gradient Langevin algorithms
Taming neural networks with TUSLA: Non-convex learning via adaptive stochastic gradient Langevin algorithms
A. Lovas
Iosif Lytras
Miklós Rásonyi
Sotirios Sabanis
25
25
0
25 Jun 2020
Nonasymptotic analysis of Stochastic Gradient Hamiltonian Monte Carlo
  under local conditions for nonconvex optimization
Nonasymptotic analysis of Stochastic Gradient Hamiltonian Monte Carlo under local conditions for nonconvex optimization
Ömer Deniz Akyildiz
Sotirios Sabanis
51
17
0
13 Feb 2020
Convergence rates for optimised adaptive importance samplers
Convergence rates for optimised adaptive importance samplers
Ömer Deniz Akyildiz
Joaquín Míguez
30
30
0
28 Mar 2019
1