Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1910.03802
Cited By
A Simple Proof of the Universality of Invariant/Equivariant Graph Neural Networks
9 October 2019
Takanori Maehara
Hoang NT
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A Simple Proof of the Universality of Invariant/Equivariant Graph Neural Networks"
10 / 10 papers shown
Title
Equivariant Polynomials for Graph Neural Networks
Omri Puny
Derek Lim
B. Kiani
Haggai Maron
Y. Lipman
24
31
0
22 Feb 2023
SpeqNets: Sparsity-aware Permutation-equivariant Graph Networks
Christopher Morris
Gaurav Rattan
Sandra Kiefer
Siamak Ravanbakhsh
42
39
0
25 Mar 2022
Sign and Basis Invariant Networks for Spectral Graph Representation Learning
Derek Lim
Joshua Robinson
Lingxiao Zhao
Tess E. Smidt
S. Sra
Haggai Maron
Stefanie Jegelka
43
139
0
25 Feb 2022
Learning on Random Balls is Sufficient for Estimating (Some) Graph Parameters
Takanori Maehara
Hoang NT
35
2
0
05 Nov 2021
SE(3) Equivariant Graph Neural Networks with Complete Local Frames
Weitao Du
He Zhang
Yuanqi Du
Qi Meng
Wei-Neng Chen
Bin Shao
Tie-Yan Liu
48
79
0
26 Oct 2021
Reconstruction for Powerful Graph Representations
Leonardo Cotta
Christopher Morris
Bruno Ribeiro
AI4CE
127
78
0
01 Oct 2021
On the Universality of Rotation Equivariant Point Cloud Networks
Nadav Dym
Haggai Maron
3DPC
27
78
0
06 Oct 2020
Expressive Power of Invariant and Equivariant Graph Neural Networks
Waïss Azizian
Marc Lelarge
20
111
0
28 Jun 2020
word2vec, node2vec, graph2vec, X2vec: Towards a Theory of Vector Embeddings of Structured Data
Martin Grohe
27
170
0
27 Mar 2020
On Learning Sets of Symmetric Elements
Haggai Maron
Or Litany
Gal Chechik
Ethan Fetaya
22
132
0
20 Feb 2020
1