ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1910.03962
  4. Cited By
Optimal experimental design via Bayesian optimization: active causal
  structure learning for Gaussian process networks

Optimal experimental design via Bayesian optimization: active causal structure learning for Gaussian process networks

9 October 2019
Julius von Kügelgen
Paul Kishan Rubenstein
Bernhard Schölkopf
Adrian Weller
    CML
ArXiv (abs)PDFHTML

Papers citing "Optimal experimental design via Bayesian optimization: active causal structure learning for Gaussian process networks"

16 / 16 papers shown
Title
Graph Agnostic Causal Bayesian Optimisation
Graph Agnostic Causal Bayesian Optimisation
Sumantrak Mukherjee
Mengyan Zhang
Seth Flaxman
Sebastian Vollmer
CML
97
0
0
05 Nov 2024
InfoNCE: Identifying the Gap Between Theory and Practice
InfoNCE: Identifying the Gap Between Theory and Practice
E. Rusak
Patrik Reizinger
Attila Juhos
Oliver Bringmann
Roland S. Zimmermann
Wieland Brendel
130
11
0
28 Jun 2024
Targeted Sequential Indirect Experiment Design
Targeted Sequential Indirect Experiment Design
Elisabeth Ailer
Niclas Dern
Jason S. Hartford
Niki Kilbertus
111
3
0
30 May 2024
Stopping Bayesian Optimization with Probabilistic Regret Bounds
Stopping Bayesian Optimization with Probabilistic Regret Bounds
James T. Wilson
65
4
0
26 Feb 2024
Effective Bayesian Causal Inference via Structural Marginalisation and Autoregressive Orders
Effective Bayesian Causal Inference via Structural Marginalisation and Autoregressive Orders
Christian Toth
Christian Knoll
Franz Pernkopf
Robert Peharz
CML
155
1
0
22 Feb 2024
Bayesian Causal Inference with Gaussian Process Networks
Bayesian Causal Inference with Gaussian Process Networks
Enrico Giudice
Jack Kuipers
G. Moffa
80
1
0
01 Feb 2024
Estimation of Counterfactual Interventions under Uncertainties
Estimation of Counterfactual Interventions under Uncertainties
Juliane Weilbach
S. Gerwinn
M. Kandemir
Martin Fraenzle
77
0
0
15 Sep 2023
Joint Bayesian Inference of Graphical Structure and Parameters with a
  Single Generative Flow Network
Joint Bayesian Inference of Graphical Structure and Parameters with a Single Generative Flow Network
T. Deleu
Mizu Nishikawa-Toomey
Jithendaraa Subramanian
Nikolay Malkin
Laurent Charlin
Yoshua Bengio
BDL
126
46
0
30 May 2023
Modern Bayesian Experimental Design
Modern Bayesian Experimental Design
Tom Rainforth
Adam Foster
Desi R. Ivanova
Freddie Bickford-Smith
119
88
0
28 Feb 2023
Differentiable Multi-Target Causal Bayesian Experimental Design
Differentiable Multi-Target Causal Bayesian Experimental Design
Yashas Annadani
P. Tigas
Desi R. Ivanova
Andrew Jesson
Y. Gal
Adam Foster
Stefan Bauer
BDLCML
80
13
0
21 Feb 2023
Active Bayesian Causal Inference
Active Bayesian Causal Inference
Christian Toth
Lars Lorch
Christian Knoll
Andreas Krause
Franz Pernkopf
Robert Peharz
Julius von Kügelgen
83
27
0
04 Jun 2022
Causal Structure Learning: a Combinatorial Perspective
Causal Structure Learning: a Combinatorial Perspective
C. Squires
Caroline Uhler
CML
120
47
0
02 Jun 2022
Interventions, Where and How? Experimental Design for Causal Models at
  Scale
Interventions, Where and How? Experimental Design for Causal Models at Scale
P. Tigas
Yashas Annadani
Andrew Jesson
Bernhard Schölkopf
Y. Gal
Stefan Bauer
CML
150
50
0
03 Mar 2022
DiBS: Differentiable Bayesian Structure Learning
DiBS: Differentiable Bayesian Structure Learning
Lars Lorch
Jonas Rothfuss
Bernhard Schölkopf
Andreas Krause
101
91
0
25 May 2021
Algorithmic recourse under imperfect causal knowledge: a probabilistic
  approach
Algorithmic recourse under imperfect causal knowledge: a probabilistic approach
Amir-Hossein Karimi
Julius von Kügelgen
Bernhard Schölkopf
Isabel Valera
CML
106
181
0
11 Jun 2020
Gryffin: An algorithm for Bayesian optimization of categorical variables
  informed by expert knowledge
Gryffin: An algorithm for Bayesian optimization of categorical variables informed by expert knowledge
Florian Hase
Matteo Aldeghi
Riley J. Hickman
L. Roch
Alán Aspuru-Guzik
106
110
0
26 Mar 2020
1