Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1910.03962
Cited By
Optimal experimental design via Bayesian optimization: active causal structure learning for Gaussian process networks
9 October 2019
Julius von Kügelgen
Paul Kishan Rubenstein
Bernhard Schölkopf
Adrian Weller
CML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Optimal experimental design via Bayesian optimization: active causal structure learning for Gaussian process networks"
16 / 16 papers shown
Title
Graph Agnostic Causal Bayesian Optimisation
Sumantrak Mukherjee
Mengyan Zhang
Seth Flaxman
Sebastian Vollmer
CML
97
0
0
05 Nov 2024
InfoNCE: Identifying the Gap Between Theory and Practice
E. Rusak
Patrik Reizinger
Attila Juhos
Oliver Bringmann
Roland S. Zimmermann
Wieland Brendel
130
11
0
28 Jun 2024
Targeted Sequential Indirect Experiment Design
Elisabeth Ailer
Niclas Dern
Jason S. Hartford
Niki Kilbertus
111
3
0
30 May 2024
Stopping Bayesian Optimization with Probabilistic Regret Bounds
James T. Wilson
65
4
0
26 Feb 2024
Effective Bayesian Causal Inference via Structural Marginalisation and Autoregressive Orders
Christian Toth
Christian Knoll
Franz Pernkopf
Robert Peharz
CML
155
1
0
22 Feb 2024
Bayesian Causal Inference with Gaussian Process Networks
Enrico Giudice
Jack Kuipers
G. Moffa
80
1
0
01 Feb 2024
Estimation of Counterfactual Interventions under Uncertainties
Juliane Weilbach
S. Gerwinn
M. Kandemir
Martin Fraenzle
77
0
0
15 Sep 2023
Joint Bayesian Inference of Graphical Structure and Parameters with a Single Generative Flow Network
T. Deleu
Mizu Nishikawa-Toomey
Jithendaraa Subramanian
Nikolay Malkin
Laurent Charlin
Yoshua Bengio
BDL
126
46
0
30 May 2023
Modern Bayesian Experimental Design
Tom Rainforth
Adam Foster
Desi R. Ivanova
Freddie Bickford-Smith
119
88
0
28 Feb 2023
Differentiable Multi-Target Causal Bayesian Experimental Design
Yashas Annadani
P. Tigas
Desi R. Ivanova
Andrew Jesson
Y. Gal
Adam Foster
Stefan Bauer
BDL
CML
80
13
0
21 Feb 2023
Active Bayesian Causal Inference
Christian Toth
Lars Lorch
Christian Knoll
Andreas Krause
Franz Pernkopf
Robert Peharz
Julius von Kügelgen
83
27
0
04 Jun 2022
Causal Structure Learning: a Combinatorial Perspective
C. Squires
Caroline Uhler
CML
120
47
0
02 Jun 2022
Interventions, Where and How? Experimental Design for Causal Models at Scale
P. Tigas
Yashas Annadani
Andrew Jesson
Bernhard Schölkopf
Y. Gal
Stefan Bauer
CML
150
50
0
03 Mar 2022
DiBS: Differentiable Bayesian Structure Learning
Lars Lorch
Jonas Rothfuss
Bernhard Schölkopf
Andreas Krause
101
91
0
25 May 2021
Algorithmic recourse under imperfect causal knowledge: a probabilistic approach
Amir-Hossein Karimi
Julius von Kügelgen
Bernhard Schölkopf
Isabel Valera
CML
106
181
0
11 Jun 2020
Gryffin: An algorithm for Bayesian optimization of categorical variables informed by expert knowledge
Florian Hase
Matteo Aldeghi
Riley J. Hickman
L. Roch
Alán Aspuru-Guzik
106
110
0
26 Mar 2020
1