ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1910.04333
  4. Cited By
Efficient Estimation for Random Dot Product Graphs via a One-step
  Procedure

Efficient Estimation for Random Dot Product Graphs via a One-step Procedure

10 October 2019
Fangzheng Xie
Yanxun Xu
ArXivPDFHTML

Papers citing "Efficient Estimation for Random Dot Product Graphs via a One-step Procedure"

3 / 3 papers shown
Title
Gradient-Based Spectral Embeddings of Random Dot Product Graphs
Gradient-Based Spectral Embeddings of Random Dot Product Graphs
Marcelo Fiori
Bernardo Marenco
Federico Larroca
P. Bermolen
Gonzalo Mateos
BDL
27
3
0
25 Jul 2023
Implications of sparsity and high triangle density for graph
  representation learning
Implications of sparsity and high triangle density for graph representation learning
Hannah Sansford
Alexander Modell
N. Whiteley
Patrick Rubin-Delanchy
22
1
0
27 Oct 2022
Signal-plus-noise matrix models: eigenvector deviations and fluctuations
Signal-plus-noise matrix models: eigenvector deviations and fluctuations
Joshua Cape
M. Tang
Carey E. Priebe
26
48
0
01 Feb 2018
1