Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1910.05117
Cited By
Data-driven discovery of free-form governing differential equations
27 September 2019
Steven Atkinson
W. Subber
Liping Wang
Genghis Khan
Philippe Hawi
R. Ghanem
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Data-driven discovery of free-form governing differential equations"
22 / 22 papers shown
Title
A data-driven approach to modeling brain activity using differential equations
Kuratov Andrey
28
0
0
14 Apr 2024
Towards stable real-world equation discovery with assessing differentiating quality influence
Mikhail Masliaev
Ilya Markov
Alexander Hvatov
27
0
0
09 Nov 2023
ODEFormer: Symbolic Regression of Dynamical Systems with Transformers
Stéphane d’Ascoli
Soren Becker
Alexander Mathis
Philippe Schwaller
Niki Kilbertus
29
22
0
09 Oct 2023
Weak-PDE-LEARN: A Weak Form Based Approach to Discovering PDEs From Noisy, Limited Data
R. Stephany
Christopher Earls
27
4
0
09 Sep 2023
Directed differential equation discovery using modified mutation and cross-over operators
E. Ivanchik
A. Hvatov
21
0
0
09 Aug 2023
Towards true discovery of the differential equations
A. Hvatov
Roman V. Titov
24
0
0
09 Aug 2023
Predicting Ordinary Differential Equations with Transformers
Soren Becker
M. Klein
Alexander Neitz
Giambattista Parascandolo
Niki Kilbertus
35
15
0
24 Jul 2023
Interpretable Machine Learning for Science with PySR and SymbolicRegression.jl
M. Cranmer
41
39
0
02 May 2023
Deep-OSG: Deep Learning of Operators in Semigroup
Junfeng Chen
Kailiang Wu
AI4TS
17
6
0
07 Feb 2023
PDE-LEARN: Using Deep Learning to Discover Partial Differential Equations from Noisy, Limited Data
R. Stephany
Christopher Earls
16
16
0
09 Dec 2022
Discovering ordinary differential equations that govern time-series
Soren Becker
M. Klein
Alexander Neitz
Giambattista Parascandolo
Niki Kilbertus
AI4TS
27
4
0
05 Nov 2022
Rediscovering orbital mechanics with machine learning
Pablo Lemos
N. Jeffrey
M. Cranmer
S. Ho
Peter W. Battaglia
PINN
AI4CE
19
86
0
04 Feb 2022
PDE-READ: Human-readable Partial Differential Equation Discovery using Deep Learning
R. Stephany
Christopher Earls
DiffM
AIMat
14
29
0
01 Nov 2021
Identifying Physical Law of Hamiltonian Systems via Meta-Learning
Seungjun Lee
Haesang Yang
W. Seong
30
13
0
23 Feb 2021
Data-based Discovery of Governing Equations
W. Subber
Piyush Pandita
Sayan Ghosh
Genghis Khan
Liping Wang
R. Ghanem
PINN
AI4CE
12
1
0
05 Dec 2020
Deep-learning based discovery of partial differential equations in integral form from sparse and noisy data
Hao Xu
Dongxiao Zhang
Nanzhe Wang
29
33
0
24 Nov 2020
Kernel-based parameter estimation of dynamical systems with unknown observation functions
Ofir Lindenbaum
A. Sagiv
Gal Mishne
Ronen Talmon
13
5
0
09 Sep 2020
Discovering Symbolic Models from Deep Learning with Inductive Biases
M. Cranmer
Alvaro Sanchez-Gonzalez
Peter W. Battaglia
Rui Xu
Kyle Cranmer
D. Spergel
S. Ho
AI4CE
19
465
0
19 Jun 2020
Bayesian Hidden Physics Models: Uncertainty Quantification for Discovery of Nonlinear Partial Differential Operators from Data
Steven Atkinson
16
8
0
07 Jun 2020
Deep-learning of Parametric Partial Differential Equations from Sparse and Noisy Data
Hao Xu
Dongxiao Zhang
Junsheng Zeng
25
57
0
16 May 2020
DLGA-PDE: Discovery of PDEs with incomplete candidate library via combination of deep learning and genetic algorithm
Hao Xu
Haibin Chang
Dongxiao Zhang
AI4CE
25
87
0
21 Jan 2020
Computational model discovery with reinforcement learning
M. Bassenne
A. Lozano-Durán
15
10
0
29 Dec 2019
1