Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1910.05266
Cited By
Backpropagation Algorithms and Reservoir Computing in Recurrent Neural Networks for the Forecasting of Complex Spatiotemporal Dynamics
9 October 2019
Pantelis R. Vlachas
Jaideep Pathak
Brian R. Hunt
T. Sapsis
M. Girvan
Edward Ott
Petros Koumoutsakos
AI4TS
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Backpropagation Algorithms and Reservoir Computing in Recurrent Neural Networks for the Forecasting of Complex Spatiotemporal Dynamics"
50 / 122 papers shown
Title
Context parroting: A simple but tough-to-beat baseline for foundation models in scientific machine learning
Yuanzhao Zhang
William Gilpin
AI4TS
27
0
0
16 May 2025
On the emergence of numerical instabilities in Next Generation Reservoir Computing
Edmilson Roque dos Santos
Erik Bollt
34
0
0
01 May 2025
All Optical Echo State Network Reservoir Computing
Ishwar S Kaushik
Peter J. Ehlers
Daniel Soh
38
0
0
11 Apr 2025
Incorporating Coupling Knowledge into Echo State Networks for Learning Spatiotemporally Chaotic Dynamics
Kuei-Jan Chu
Nozomi Akashi
Akihiro Yamamoto
37
0
0
02 Apr 2025
Detecting Financial Fraud with Hybrid Deep Learning: A Mix-of-Experts Approach to Sequential and Anomalous Patterns
Diego Vallarino
25
1
0
01 Apr 2025
Data-Driven Forecasting of High-Dimensional Transient and Stationary Processes via Space-Time Projection
Oliver T. Schmidt
AI4TS
36
1
0
31 Mar 2025
Thermalizer: Stable autoregressive neural emulation of spatiotemporal chaos
Chris Pedersen
L. Zanna
Joan Bruna
55
2
0
24 Mar 2025
Reservoir Network with Structural Plasticity for Human Activity Recognition
Abdullah M. Zyarah
Alaa M. Abdul-Hadi
Dhireesha Kudithipudi
31
3
0
01 Mar 2025
State-space models are accurate and efficient neural operators for dynamical systems
Zheyuan Hu
Nazanin Ahmadi Daryakenari
Qianli Shen
Kenji Kawaguchi
George Karniadakis
Mamba
AI4CE
75
13
0
28 Jan 2025
On the relationship between Koopman operator approximations and neural ordinary differential equations for data-driven time-evolution predictions
Jake Buzhardt
C. Ricardo Constante-Amores
Michael D. Graham
73
2
0
20 Nov 2024
A scalable generative model for dynamical system reconstruction from neuroimaging data
Eric Volkmann
Alena Brändle
Daniel Durstewitz
G. Koppe
AI4CE
33
2
0
05 Nov 2024
Reconstructing dynamics from sparse observations with no training on target system
Zheng-Meng Zhai
Jun-Yin Huang
Benjamin D. Stern
Y. Lai
35
1
0
28 Oct 2024
Almost-Linear RNNs Yield Highly Interpretable Symbolic Codes in Dynamical Systems Reconstruction
Manuel Brenner
Christoph Jürgen Hemmer
Zahra Monfared
Daniel Durstewitz
AI4CE
43
2
0
18 Oct 2024
Poisson-Dirac Neural Networks for Modeling Coupled Dynamical Systems across Domains
Razmik Arman Khosrovian
Takaharu Yaguchi
Hiroaki Yoshimura
Takashi Matsubara
AI4CE
29
0
0
15 Oct 2024
Asymmetrically connected reservoir networks learn better
Shailendra K. Rathor
Martin Ziegler
Jörg Schumacher
11
0
0
01 Oct 2024
Stability analysis of chaotic systems in latent spaces
Elise Özalp
Luca Magri
49
3
0
01 Oct 2024
Zero-shot forecasting of chaotic systems
Yuanzhao Zhang
William Gilpin
AI4TS
42
6
0
24 Sep 2024
Hardware-Friendly Implementation of Physical Reservoir Computing with CMOS-based Time-domain Analog Spiking Neurons
Nanako Kimura
Ckristian Duran
Zolboo Byambadorj
Ryosho Nakane
Tetsuya Iizuka
22
0
0
18 Sep 2024
On latent dynamics learning in nonlinear reduced order modeling
N. Farenga
S. Fresca
Simone Brivio
Andrea Manzoni
AI4CE
41
1
0
27 Aug 2024
4D-Var using Hessian approximation and backpropagation applied to automatically-differentiable numerical and machine learning models
Kylen Solvik
Stephen G. Penny
Stephan Hoyer
26
2
0
05 Aug 2024
Higher order quantum reservoir computing for non-intrusive reduced-order models
Saloua Naama
R. Maulik
21
0
0
31 Jul 2024
Machine Learning for Predicting Chaotic Systems
Christof Schötz
Alistair J R White
Maximilian Gelbrecht
Niklas Boers
AI4CE
41
4
0
29 Jul 2024
Weak baselines and reporting biases lead to overoptimism in machine learning for fluid-related partial differential equations
N. McGreivy
Ammar Hakim
AI4CE
39
43
0
09 Jul 2024
Temporal Convolution Derived Multi-Layered Reservoir Computing
Johannes Viehweg
Dominik Walther
Prof. Dr. -Ing. Patrick Mäder
AI4TS
27
1
0
09 Jul 2024
Exploiting Heterogeneity in Timescales for Sparse Recurrent Spiking Neural Networks for Energy-Efficient Edge Computing
Biswadeep Chakraborty
Saibal Mukhopadhyay
38
2
0
08 Jul 2024
On instabilities in neural network-based physics simulators
Daniel Floryan
AI4CE
46
2
0
18 Jun 2024
Oscillations enhance time-series prediction in reservoir computing with feedback
Yuji Kawai
Takashi Morita
Jihoon Park
Minoru Asada
AI4TS
31
1
0
05 Jun 2024
Reservoir Computing Benchmarks: a tutorial review and critique
Chester Wringe
Martin A. Trefzer
Susan Stepney
24
2
0
10 May 2024
Solving Partial Differential Equations with Equivariant Extreme Learning Machines
Hans Harder
Jean Rabault
Ricardo Vinuesa
Mikael Mortensen
Sebastian Peitz
46
3
0
29 Apr 2024
Forecasting the Forced van der Pol Equation with Frequent Phase Shifts Using Reservoir Computing
Sho Kuno
Hiroshi Kori
18
0
0
23 Apr 2024
Sparse Spiking Neural Network: Exploiting Heterogeneity in Timescales for Pruning Recurrent SNN
Biswadeep Chakraborty
Beomseok Kang
H. Kumar
Saibal Mukhopadhyay
46
8
0
06 Mar 2024
Hybridizing Traditional and Next-Generation Reservoir Computing to Accurately and Efficiently Forecast Dynamical Systems
Ravi Chepuri
Dael Amzalag
Thomas Antonsen
M. Girvan
27
9
0
04 Mar 2024
Out-of-Domain Generalization in Dynamical Systems Reconstruction
Niclas Alexander Göring
Florian Hess
Manuel Brenner
Zahra Monfared
Daniel Durstewitz
AI4CE
43
12
0
28 Feb 2024
DySLIM: Dynamics Stable Learning by Invariant Measure for Chaotic Systems
Yair Schiff
Zhong Yi Wan
Jeffrey B. Parker
Stephan Hoyer
Volodymyr Kuleshov
Fei Sha
Leonardo Zepeda-Núñez
36
13
0
06 Feb 2024
RefreshNet: Learning Multiscale Dynamics through Hierarchical Refreshing
Junaid Farooq
Danish Rafiq
Pantelis R. Vlachas
M. A. Bazaz
34
0
0
24 Jan 2024
Small jet engine reservoir computing digital twin
Colton J. Wright
Nicholas Biederman
Brian Gyovai
Daniel J. Gauthier
Jay P. Wilhelm
20
0
0
15 Dec 2023
An exact mathematical description of computation with transient spatiotemporal dynamics in a complex-valued neural network
Roberto C. Budzinski
Alexandra N. Busch
Samuel Mestern
Erwan Martin
L. Liboni
F. Pasini
Ján Mináč
Todd Coleman
Wataru Inoue
L. Muller
25
4
0
28 Nov 2023
Machine-learning parameter tracking with partial state observation
Zheng-Meng Zhai
Mohammadamin Moradi
Bryan Glaz
Mulugeta Haile
Ying-Cheng Lai
32
7
0
15 Nov 2023
Bifurcations and loss jumps in RNN training
Lukas Eisenmann
Zahra Monfared
Niclas Alexander Göring
Daniel Durstewitz
24
9
0
26 Oct 2023
Tasks Makyth Models: Machine Learning Assisted Surrogates for Tipping Points
Gianluca Fabiani
N. Evangelou
Tianqi Cui
J. M. Bello-Rivas
Cristina P. Martin-Linares
Constantinos Siettos
Ioannis G. Kevrekidis
40
2
0
25 Sep 2023
Control-aware echo state networks (Ca-ESN) for the suppression of extreme events
A. Racca
Luca Magri
11
2
0
06 Aug 2023
Variability of echo state network prediction horizon for partially observed dynamical systems
Ajit Mahata
Reetish Padhi
A. Apte
26
1
0
19 Jun 2023
Generalized Teacher Forcing for Learning Chaotic Dynamics
Florian Hess
Zahra Monfared
Manuela Brenner
Daniel Durstewitz
AI4CE
37
31
0
07 Jun 2023
Reconstruction, forecasting, and stability of chaotic dynamics from partial data
Elise Özalp
G. Margazoglou
Luca Magri
AI4TS
18
10
0
24 May 2023
Temporal Subsampling Diminishes Small Spatial Scales in Recurrent Neural Network Emulators of Geophysical Turbulence
T. A. Smith
S. Penny
Jason A. Platt
Tse-Chun Chen
27
5
0
28 Apr 2023
Constraining Chaos: Enforcing dynamical invariants in the training of recurrent neural networks
Jason A. Platt
S. Penny
T. A. Smith
Tse-Chun Chen
H. Abarbanel
AI4TS
38
5
0
24 Apr 2023
Adaptive learning of effective dynamics: Adaptive real-time, online modeling for complex systems
Ivica Kicic
Pantelis R. Vlachas
G. Arampatzis
Michail Chatzimanolakis
Leonidas J. Guibas
Petros Koumoutsakos
AI4CE
24
6
0
04 Apr 2023
Model scale versus domain knowledge in statistical forecasting of chaotic systems
W. Gilpin
AI4TS
43
17
0
13 Mar 2023
Learning from Predictions: Fusing Training and Autoregressive Inference for Long-Term Spatiotemporal Forecasts
Pantelis R. Vlachas
Petros Koumoutsakos
AI4TS
AI4CE
23
7
0
22 Feb 2023
Physics-Informed Long Short-Term Memory for Forecasting and Reconstruction of Chaos
Elise Özalp
G. Margazoglou
Luca Magri
AI4TS
14
3
0
03 Feb 2023
1
2
3
Next