ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1910.05387
  4. Cited By
The Case for Evaluating Causal Models Using Interventional Measures and
  Empirical Data
v1v2 (latest)

The Case for Evaluating Causal Models Using Interventional Measures and Empirical Data

11 October 2019
A. Gentzel
Dan Garant
David D. Jensen
    CMLELM
ArXiv (abs)PDFHTML

Papers citing "The Case for Evaluating Causal Models Using Interventional Measures and Empirical Data"

32 / 32 papers shown
Title
Heterogeneous Causal Discovery of Repeated Undesirable Health Outcomes
Shishir Adhikari
Guido Muscioni
Mark Shapiro
Plamen Petrov
Elena Zheleva
CML
93
0
0
14 Mar 2025
CausalMan: A physics-based simulator for large-scale causality
CausalMan: A physics-based simulator for large-scale causality
Nicholas Tagliapietra
J. Luettin
Lavdim Halilaj
Moritz Willig
Tim Pychynski
Kristian Kersting
CML
107
0
0
18 Feb 2025
Learning Personalized Treatment Decisions in Precision Medicine:
  Disentangling Treatment Assignment Bias in Counterfactual Outcome Prediction
  and Biomarker Identification
Learning Personalized Treatment Decisions in Precision Medicine: Disentangling Treatment Assignment Bias in Counterfactual Outcome Prediction and Biomarker Identification
Michael Vollenweider
Manuel Schürch
Chiara Rohrer
Gabriele Gut
Michael Krauthammer
Andreas Wicki
CML
54
0
0
01 Oct 2024
Beyond Correlation: Incorporating Counterfactual Guidance to Better
  Support Exploratory Visual Analysis
Beyond Correlation: Incorporating Counterfactual Guidance to Better Support Exploratory Visual Analysis
Arran Zeyu Wang
D. Borland
David Gotz
CML
81
2
0
28 Aug 2024
IncomeSCM: From tabular data set to time-series simulator and causal
  estimation benchmark
IncomeSCM: From tabular data set to time-series simulator and causal estimation benchmark
Fredrik D. Johansson
CML
62
0
0
25 May 2024
A Data-Driven Two-Phase Multi-Split Causal Ensemble Model for Time
  Series
A Data-Driven Two-Phase Multi-Split Causal Ensemble Model for Time Series
Zhipeng Ma
Marco Kemmerling
Daniel Buschmann
Chrismarie Enslin
Daniel Lutticke
Robert H. Schmitt
CML
53
3
0
04 Mar 2024
Adjustment Identification Distance: A gadjid for Causal Structure
  Learning
Adjustment Identification Distance: A gadjid for Causal Structure Learning
Leonard Henckel
Theo Würtzen
Sebastian Weichwald
CML
95
11
0
13 Feb 2024
Proximal Causal Inference With Text Data
Proximal Causal Inference With Text Data
Jacob M. Chen
Rohit Bhattacharya
Katherine A. Keith
70
2
0
12 Jan 2024
RCT Rejection Sampling for Causal Estimation Evaluation
RCT Rejection Sampling for Causal Estimation Evaluation
Katherine A. Keith
Sergey Feldman
David Jurgens
Jonathan Bragg
Rohit Bhattacharya
CML
77
7
0
27 Jul 2023
$\texttt{causalAssembly}$: Generating Realistic Production Data for
  Benchmarking Causal Discovery
causalAssembly\texttt{causalAssembly}causalAssembly: Generating Realistic Production Data for Benchmarking Causal Discovery
Konstantin Göbler
Tobias Windisch
Mathias Drton
T. Pychynski
Steffen Sonntag
Martin Roth
CML
183
13
0
19 Jun 2023
Reinterpreting causal discovery as the task of predicting unobserved
  joint statistics
Reinterpreting causal discovery as the task of predicting unobserved joint statistics
Dominik Janzing
P. M. Faller
L. C. Vankadara
CML
95
3
0
11 May 2023
NODAGS-Flow: Nonlinear Cyclic Causal Structure Learning
NODAGS-Flow: Nonlinear Cyclic Causal Structure Learning
Muralikrishnna G. Sethuraman
Romain Lopez
Ramkumar Veppathur Mohan
Faramarz Fekri
Tommaso Biancalani
Jan-Christian Hütter
CML
79
12
0
04 Jan 2023
Learning Causal Representations of Single Cells via Sparse Mechanism
  Shift Modeling
Learning Causal Representations of Single Cells via Sparse Mechanism Shift Modeling
Romain Lopez
Natavsa Tagasovska
Stephen Ra
K. Cho
J. Pritchard
Aviv Regev
OODCMLDRL
100
39
0
07 Nov 2022
CausalBench: A Large-scale Benchmark for Network Inference from
  Single-cell Perturbation Data
CausalBench: A Large-scale Benchmark for Network Inference from Single-cell Perturbation Data
Mathieu Chevalley
Yusuf Roohani
Arash Mehrjou
J. Leskovec
Patrick Schwab
CML
98
38
0
31 Oct 2022
Large-Scale Differentiable Causal Discovery of Factor Graphs
Large-Scale Differentiable Causal Discovery of Factor Graphs
Romain Lopez
Jan-Christian Hütter
J. Pritchard
Aviv Regev
CMLAI4CE
87
43
0
15 Jun 2022
Validating Causal Inference Methods
Validating Causal Inference Methods
Harsh Parikh
Carlos Varjao
Louise Xu
E. T. Tchetgen
CML
87
21
0
09 Feb 2022
Evaluation Methods and Measures for Causal Learning Algorithms
Evaluation Methods and Measures for Causal Learning Algorithms
Lu Cheng
Ruocheng Guo
Raha Moraffah
Paras Sheth
K. S. Candan
Huan Liu
CMLELM
100
54
0
07 Feb 2022
ADCB: An Alzheimer's disease benchmark for evaluating observational
  estimators of causal effects
ADCB: An Alzheimer's disease benchmark for evaluating observational estimators of causal effects
N. M. Kinyanjui
Fredrik D. Johansson
CML
45
0
0
12 Nov 2021
Identifying Causal Influences on Publication Trends and Behavior: A Case
  Study of the Computational Linguistics Community
Identifying Causal Influences on Publication Trends and Behavior: A Case Study of the Computational Linguistics Community
M. Glenski
Svitlana Volkova
CMLAI4CE
84
1
0
15 Oct 2021
The Proximal ID Algorithm
The Proximal ID Algorithm
I. Shpitser
Zach Wood-Doughty
E. T. Tchetgen
CML
85
17
0
15 Aug 2021
Generating Synthetic Text Data to Evaluate Causal Inference Methods
Generating Synthetic Text Data to Evaluate Causal Inference Methods
Zach Wood-Doughty
I. Shpitser
Mark Dredze
SyDaCML
68
11
0
10 Feb 2021
Evaluating Tree Explanation Methods for Anomaly Reasoning: A Case Study
  of SHAP TreeExplainer and TreeInterpreter
Evaluating Tree Explanation Methods for Anomaly Reasoning: A Case Study of SHAP TreeExplainer and TreeInterpreter
Pulkit Sharma
Shezan Rohinton Mirzan
Apurva Bhandari
Anish Pimpley
Abhiram Eswaran
Soundar Srinivasan
Liqun Shao
FAtt
21
11
0
13 Oct 2020
How and Why to Use Experimental Data to Evaluate Methods for
  Observational Causal Inference
How and Why to Use Experimental Data to Evaluate Methods for Observational Causal Inference
A. Gentzel
Purva Pruthi
David D. Jensen
CML
67
18
0
06 Oct 2020
Towards a Measure of Individual Fairness for Deep Learning
Towards a Measure of Individual Fairness for Deep Learning
Krystal Maughan
Joseph P. Near
TDIFaML
49
5
0
28 Sep 2020
Adjusting for Confounders with Text: Challenges and an Empirical
  Evaluation Framework for Causal Inference
Adjusting for Confounders with Text: Challenges and an Empirical Evaluation Framework for Causal Inference
Galen Cassebeer Weld
Peter West
M. Glenski
David Arbour
Ryan Rossi
Tim Althoff
CML
104
20
0
21 Sep 2020
Causal Inference using Gaussian Processes with Structured Latent
  Confounders
Causal Inference using Gaussian Processes with Structured Latent Confounders
Sam Witty
Kenta Takatsu
David D. Jensen
Vikash K. Mansinghka
CML
143
19
0
14 Jul 2020
Differentiable Causal Discovery from Interventional Data
Differentiable Causal Discovery from Interventional Data
P. Brouillard
Sébastien Lachapelle
Alexandre Lacoste
Simon Lacoste-Julien
Alexandre Drouin
CML
82
191
0
03 Jul 2020
CausaLM: Causal Model Explanation Through Counterfactual Language Models
CausaLM: Causal Model Explanation Through Counterfactual Language Models
Amir Feder
Nadav Oved
Uri Shalit
Roi Reichart
CMLLRM
161
162
0
27 May 2020
A Ladder of Causal Distances
A Ladder of Causal Distances
Maxime Peyrard
Robert West
CML
65
6
0
05 May 2020
Text and Causal Inference: A Review of Using Text to Remove Confounding
  from Causal Estimates
Text and Causal Inference: A Review of Using Text to Remove Confounding from Causal Estimates
Katherine A. Keith
David D. Jensen
Brendan O'Connor
CML
68
114
0
01 May 2020
Causal datasheet: An approximate guide to practically assess Bayesian
  networks in the real world
Causal datasheet: An approximate guide to practically assess Bayesian networks in the real world
B. Butcher
V. Huang
Jeremy Reffin
S. Sgaier
Grace Charles
Novi Quadrianto
CML
111
18
0
12 Mar 2020
Automated versus do-it-yourself methods for causal inference: Lessons
  learned from a data analysis competition
Automated versus do-it-yourself methods for causal inference: Lessons learned from a data analysis competition
Vincent Dorie
J. Hill
Uri Shalit
M. Scott
D. Cervone
CML
283
288
0
09 Jul 2017
1