Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1910.05505
Cited By
v1
v2
v3
v4
v5 (latest)
Learning deep linear neural networks: Riemannian gradient flows and convergence to global minimizers
12 October 2019
B. Bah
Holger Rauhut
Ulrich Terstiege
Michael Westdickenberg
MLT
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Learning deep linear neural networks: Riemannian gradient flows and convergence to global minimizers"
46 / 46 papers shown
Title
Understanding Learning Invariance in Deep Linear Networks
Hao Duan
Guido Montúfar
25
0
0
16 Jun 2025
Symmetry in Neural Network Parameter Spaces
Bo Zhao
Robin Walters
Rose Yu
27
0
0
16 Jun 2025
Transformative or Conservative? Conservation laws for ResNets and Transformers
Sibylle Marcotte
Rémi Gribonval
Gabriel Peyré
40
0
0
06 Jun 2025
Digital implementations of deep feature extractors are intrinsically informative
Max Getter
130
0
0
20 Feb 2025
A new Input Convex Neural Network with application to options pricing
Vincent Lemaire
Gilles Pagès
Christian Yeo
99
0
0
19 Nov 2024
Plastic Learning with Deep Fourier Features
Alex Lewandowski
Dale Schuurmans
Marlos C. Machado
CLL
102
3
0
27 Oct 2024
Convergence of continuous-time stochastic gradient descent with applications to linear deep neural networks
Gabor Lugosi
Eulalia Nualart
35
0
0
11 Sep 2024
Lecture Notes on Linear Neural Networks: A Tale of Optimization and Generalization in Deep Learning
Nadav Cohen
Noam Razin
115
0
0
25 Aug 2024
Federated Dynamical Low-Rank Training with Global Loss Convergence Guarantees
Steffen Schotthöfer
M. P. Laiu
FedML
75
5
0
25 Jun 2024
Keep the Momentum: Conservation Laws beyond Euclidean Gradient Flows
Sibylle Marcotte
Rémi Gribonval
Gabriel Peyré
48
1
0
21 May 2024
Understanding the training of infinitely deep and wide ResNets with Conditional Optimal Transport
Raphael Barboni
Gabriel Peyré
Franccois-Xavier Vialard
63
3
0
19 Mar 2024
On the Stability of Gradient Descent for Large Learning Rate
Alexandru Cruaciun
Debarghya Ghoshdastidar
MLT
ODL
27
0
0
20 Feb 2024
Neural Rank Collapse: Weight Decay and Small Within-Class Variability Yield Low-Rank Bias
Emanuele Zangrando
Piero Deidda
Simone Brugiapaglia
Nicola Guglielmi
Francesco Tudisco
83
8
0
06 Feb 2024
On the Role of Initialization on the Implicit Bias in Deep Linear Networks
Oria Gruber
H. Avron
AI4CE
16
0
0
04 Feb 2024
On the Impact of Overparameterization on the Training of a Shallow Neural Network in High Dimensions
Simon Martin
Francis Bach
Giulio Biroli
104
11
0
07 Nov 2023
Implicit regularization in AI meets generalized hardness of approximation in optimization -- Sharp results for diagonal linear networks
J. S. Wind
Vegard Antun
A. Hansen
64
4
0
13 Jul 2023
Neural Hilbert Ladders: Multi-Layer Neural Networks in Function Space
Zhengdao Chen
90
1
0
03 Jul 2023
Abide by the Law and Follow the Flow: Conservation Laws for Gradient Flows
Sibylle Marcotte
Rémi Gribonval
Gabriel Peyré
117
19
0
30 Jun 2023
Robust low-rank training via approximate orthonormal constraints
Dayana Savostianova
Emanuele Zangrando
Gianluca Ceruti
Francesco Tudisco
69
10
0
02 Jun 2023
Combining Explicit and Implicit Regularization for Efficient Learning in Deep Networks
Dan Zhao
111
6
0
01 Jun 2023
Neural (Tangent Kernel) Collapse
Mariia Seleznova
Dana Weitzner
Raja Giryes
Gitta Kutyniok
H. Chou
64
10
0
25 May 2023
Robust Implicit Regularization via Weight Normalization
H. Chou
Holger Rauhut
Rachel A. Ward
88
7
0
09 May 2023
Function Space and Critical Points of Linear Convolutional Networks
Kathlén Kohn
Guido Montúfar
Vahid Shahverdi
Matthew Trager
85
14
0
12 Apr 2023
Optimization Dynamics of Equivariant and Augmented Neural Networks
Axel Flinth
F. Ohlsson
105
7
0
23 Mar 2023
Critical Points and Convergence Analysis of Generative Deep Linear Networks Trained with Bures-Wasserstein Loss
Pierre Bréchet
Katerina Papagiannouli
Jing An
Guido Montúfar
82
4
0
06 Mar 2023
A Dynamics Theory of Implicit Regularization in Deep Low-Rank Matrix Factorization
JIAN-PENG Cao
Chao Qian
Yihui Huang
Dicheng Chen
Yuncheng Gao
Jiyang Dong
D. Guo
X. Qu
122
1
0
29 Dec 2022
Infinite-width limit of deep linear neural networks
Lénaïc Chizat
Maria Colombo
Xavier Fernández-Real
Alessio Figalli
84
16
0
29 Nov 2022
Finite Sample Identification of Wide Shallow Neural Networks with Biases
M. Fornasier
T. Klock
Marco Mondelli
Michael Rauchensteiner
52
6
0
08 Nov 2022
Deep Linear Networks for Matrix Completion -- An Infinite Depth Limit
Nadav Cohen
Govind Menon
Zsolt Veraszto
ODL
51
7
0
22 Oct 2022
Gradient descent provably escapes saddle points in the training of shallow ReLU networks
Patrick Cheridito
Arnulf Jentzen
Florian Rossmannek
103
5
0
03 Aug 2022
Side Effects of Learning from Low-dimensional Data Embedded in a Euclidean Space
Juncai He
R. Tsai
Rachel A. Ward
95
9
0
01 Mar 2022
Implicit Regularization in Hierarchical Tensor Factorization and Deep Convolutional Neural Networks
Noam Razin
Asaf Maman
Nadav Cohen
132
29
0
27 Jan 2022
Global Convergence Analysis of Deep Linear Networks with A One-neuron Layer
Kun Chen
Dachao Lin
Zhihua Zhang
60
1
0
08 Jan 2022
How and When Random Feedback Works: A Case Study of Low-Rank Matrix Factorization
Shivam Garg
Santosh Vempala
78
3
0
17 Nov 2021
Convergence of gradient descent for learning linear neural networks
Gabin Maxime Nguegnang
Holger Rauhut
Ulrich Terstiege
MLT
63
18
0
04 Aug 2021
Geometry of Linear Convolutional Networks
Kathlén Kohn
Thomas Merkh
Guido Montúfar
Matthew Trager
115
20
0
03 Aug 2021
The loss landscape of deep linear neural networks: a second-order analysis
El Mehdi Achour
Franccois Malgouyres
Sébastien Gerchinovitz
ODL
69
10
0
28 Jul 2021
Convergence analysis for gradient flows in the training of artificial neural networks with ReLU activation
Arnulf Jentzen
Adrian Riekert
55
23
0
09 Jul 2021
Small random initialization is akin to spectral learning: Optimization and generalization guarantees for overparameterized low-rank matrix reconstruction
Dominik Stöger
Mahdi Soltanolkotabi
ODL
96
78
0
28 Jun 2021
Principal Components Bias in Over-parameterized Linear Models, and its Manifestation in Deep Neural Networks
Guy Hacohen
D. Weinshall
125
10
0
12 May 2021
Stable Recovery of Entangled Weights: Towards Robust Identification of Deep Neural Networks from Minimal Samples
Christian Fiedler
M. Fornasier
T. Klock
Michael Rauchensteiner
OOD
45
13
0
18 Jan 2021
First-Order Methods for Convex Optimization
Pavel Dvurechensky
Mathias Staudigl
Shimrit Shtern
ODL
90
26
0
04 Jan 2021
Asymptotic convergence rate of Dropout on shallow linear neural networks
Albert Senen-Cerda
J. Sanders
118
8
0
01 Dec 2020
Gradient Descent for Deep Matrix Factorization: Dynamics and Implicit Bias towards Low Rank
H. Chou
Carsten Gieshoff
J. Maly
Holger Rauhut
83
42
0
27 Nov 2020
Consensus-Based Optimization on the Sphere: Convergence to Global Minimizers and Machine Learning
M. Fornasier
Hui Huang
L. Pareschi
Philippe Sünnen
129
69
0
31 Jan 2020
Pure and Spurious Critical Points: a Geometric Study of Linear Networks
Matthew Trager
Kathlén Kohn
Joan Bruna
77
31
0
03 Oct 2019
1