ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1910.05639
  4. Cited By
Disentangling Interpretable Generative Parameters of Random and
  Real-World Graphs

Disentangling Interpretable Generative Parameters of Random and Real-World Graphs

12 October 2019
Niklas Stoehr
Emine Yilmaz
Marc Brockschmidt
Jan Stuehmer
    BDL
    CML
    DRL
ArXivPDFHTML

Papers citing "Disentangling Interpretable Generative Parameters of Random and Real-World Graphs"

4 / 4 papers shown
Title
A Systematic Survey on Deep Generative Models for Graph Generation
A Systematic Survey on Deep Generative Models for Graph Generation
Xiaojie Guo
Liang Zhao
MedIm
26
145
0
13 Jul 2020
Interpretable Deep Graph Generation with Node-Edge Co-Disentanglement
Interpretable Deep Graph Generation with Node-Edge Co-Disentanglement
Xiaojie Guo
Liang Zhao
Zhao Qin
Lingfei Wu
Amarda Shehu
Yanfang Ye
CoGe
DRL
22
46
0
09 Jun 2020
Independent Subspace Analysis for Unsupervised Learning of Disentangled
  Representations
Independent Subspace Analysis for Unsupervised Learning of Disentangled Representations
Jan Stühmer
Richard E. Turner
Sebastian Nowozin
DRL
BDL
CoGe
76
25
0
05 Sep 2019
Geometric deep learning: going beyond Euclidean data
Geometric deep learning: going beyond Euclidean data
M. Bronstein
Joan Bruna
Yann LeCun
Arthur Szlam
P. Vandergheynst
GNN
231
3,230
0
24 Nov 2016
1