Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1910.05639
Cited By
Disentangling Interpretable Generative Parameters of Random and Real-World Graphs
12 October 2019
Niklas Stoehr
Emine Yilmaz
Marc Brockschmidt
Jan Stuehmer
BDL
CML
DRL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Disentangling Interpretable Generative Parameters of Random and Real-World Graphs"
4 / 4 papers shown
Title
A Systematic Survey on Deep Generative Models for Graph Generation
Xiaojie Guo
Liang Zhao
MedIm
26
145
0
13 Jul 2020
Interpretable Deep Graph Generation with Node-Edge Co-Disentanglement
Xiaojie Guo
Liang Zhao
Zhao Qin
Lingfei Wu
Amarda Shehu
Yanfang Ye
CoGe
DRL
22
46
0
09 Jun 2020
Independent Subspace Analysis for Unsupervised Learning of Disentangled Representations
Jan Stühmer
Richard E. Turner
Sebastian Nowozin
DRL
BDL
CoGe
76
25
0
05 Sep 2019
Geometric deep learning: going beyond Euclidean data
M. Bronstein
Joan Bruna
Yann LeCun
Arthur Szlam
P. Vandergheynst
GNN
231
3,230
0
24 Nov 2016
1