Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1910.06243
Cited By
Introducing an Explicit Symplectic Integration Scheme for Riemannian Manifold Hamiltonian Monte Carlo
14 October 2019
Adam D. Cobb
A. G. Baydin
Andrew Markham
Stephen J. Roberts
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Introducing an Explicit Symplectic Integration Scheme for Riemannian Manifold Hamiltonian Monte Carlo"
20 / 20 papers shown
Title
SMC Is All You Need: Parallel Strong Scaling
Xin Liang
J. Lukens
Sanjaya Lohani
Brian T. Kirby
T. Searles
Kody J. H. Law
28
2
0
09 Feb 2024
Direct Amortized Likelihood Ratio Estimation
Adam D. Cobb
Brian Matejek
Daniel Elenius
Anirban Roy
Susmit Jha
18
2
0
17 Nov 2023
Hessian-informed Hamiltonian Monte Carlo for high-dimensional problems
M. Karimi
K. Dayal
M. Pozzi
16
2
0
28 Mar 2023
Unbiased constrained sampling with Self-Concordant Barrier Hamiltonian Monte Carlo
Maxence Noble
Valentin De Bortoli
Alain Durmus
23
6
0
21 Oct 2022
Condition-number-independent convergence rate of Riemannian Hamiltonian Monte Carlo with numerical integrators
Yunbum Kook
Y. Lee
Ruoqi Shen
Santosh Vempala
43
12
0
13 Oct 2022
Geometric Methods for Sampling, Optimisation, Inference and Adaptive Agents
Alessandro Barp
Lancelot Da Costa
G. Francca
Karl J. Friston
Mark Girolami
Michael I. Jordan
G. Pavliotis
38
25
0
20 Mar 2022
Several Remarks on the Numerical Integrator in Lagrangian Monte Carlo
James A. Brofos
Roy R. Lederman
18
0
0
28 Feb 2022
Sampling with Riemannian Hamiltonian Monte Carlo in a Constrained Space
Yunbum Kook
Y. Lee
Ruoqi Shen
Santosh Vempala
19
38
0
03 Feb 2022
Lagrangian Manifold Monte Carlo on Monge Patches
M. Hartmann
Mark Girolami
Arto Klami
18
10
0
01 Feb 2022
Exponential Family Model-Based Reinforcement Learning via Score Matching
Gen Li
Junbo Li
Anmol Kabra
Nathan Srebro
Zhaoran Wang
Zhuoran Yang
37
4
0
28 Dec 2021
On Numerical Considerations for Riemannian Manifold Hamiltonian Monte Carlo
James A. Brofos
Roy R. Lederman
21
8
0
19 Nov 2021
Antithetic Riemannian Manifold And Quantum-Inspired Hamiltonian Monte Carlo
W. Mongwe
R. Mbuvha
T. Marwala
18
6
0
05 Jul 2021
Semi-Empirical Objective Functions for MCMC Proposal Optimization
Chris Cannella
Vahid Tarokh
31
1
0
03 Jun 2021
Riemannian Langevin Algorithm for Solving Semidefinite Programs
Mufan Li
Murat A. Erdogdu
13
29
0
21 Oct 2020
Non-Canonical Hamiltonian Monte Carlo
James A. Brofos
Roy R. Lederman
24
6
0
18 Aug 2020
URSABench: Comprehensive Benchmarking of Approximate Bayesian Inference Methods for Deep Neural Networks
Meet P. Vadera
Adam D. Cobb
B. Jalaeian
Benjamin M. Marlin
BDL
UQCV
27
16
0
08 Jul 2020
Tractable Approximate Gaussian Inference for Bayesian Neural Networks
J. Goulet
L. Nguyen
Saeid Amiri
BDL
16
18
0
20 Apr 2020
Bayesian Deep Learning and a Probabilistic Perspective of Generalization
A. Wilson
Pavel Izmailov
UQCV
BDL
OOD
24
642
0
20 Feb 2020
Liberty or Depth: Deep Bayesian Neural Nets Do Not Need Complex Weight Posterior Approximations
Sebastian Farquhar
Lewis Smith
Y. Gal
UQCV
BDL
9
5
0
10 Feb 2020
MCMC using Hamiltonian dynamics
Radford M. Neal
189
3,268
0
09 Jun 2012
1