Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1910.07291
Cited By
Newton vs the machine: solving the chaotic three-body problem using deep neural networks
16 October 2019
Philip G. Breen
Christopher N. Foley
Tjarda Boekholt
Simon Portegies Zwart
AI4CE
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Newton vs the machine: solving the chaotic three-body problem using deep neural networks"
9 / 9 papers shown
Title
A hybrid approach for solving the gravitational N-body problem with Artificial Neural Networks
V. S. Ulibarrena
Philipp Horn
S. P. Zwart
E. Sellentin
B. Koren
Maxwell X. Cai
PINN
24
2
0
31 Oct 2023
Controlling Neural Networks with Rule Representations
Sungyong Seo
Sercan O. Arik
Jinsung Yoon
Xiang Zhang
Kihyuk Sohn
Tomas Pfister
OOD
AI4CE
105
35
0
14 Jun 2021
Review: Deep Learning in Electron Microscopy
Jeffrey M. Ede
191
80
0
17 Sep 2020
Hypersolvers: Toward Fast Continuous-Depth Models
Michael Poli
Stefano Massaroli
Atsushi Yamashita
Hajime Asama
Jinkyoo Park
BDL
AI4CE
72
47
0
19 Jul 2020
Sparse Symplectically Integrated Neural Networks
Daniel M. DiPietro
S. Xiong
Bo Zhu
88
31
0
10 Jun 2020
Adaptive Checkpoint Adjoint Method for Gradient Estimation in Neural ODE
Juntang Zhuang
Nicha Dvornek
Xiaoxiao Li
S. Tatikonda
X. Papademetris
James Duncan
BDL
119
112
0
03 Jun 2020
When Machine Learning Meets Multiscale Modeling in Chemical Reactions
Wuyue Yang
Liangrong Peng
Yi Zhu
L. Hong
AI4CE
28
12
0
01 Jun 2020
Solving Newton's Equations of Motion with Large Timesteps using Recurrent Neural Networks based Operators
J. Kadupitiya
Geoffrey C. Fox
V. Jadhao
AI4CE
70
22
0
12 Apr 2020
Depth-Width Trade-offs for ReLU Networks via Sharkovsky's Theorem
Vaggos Chatziafratis
Sai Ganesh Nagarajan
Ioannis Panageas
Tianlin Li
63
21
0
09 Dec 2019
1