ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1910.09398
  4. Cited By
Learning Model-Agnostic Counterfactual Explanations for Tabular Data

Learning Model-Agnostic Counterfactual Explanations for Tabular Data

21 October 2019
Martin Pawelczyk
Johannes Haug
Klaus Broelemann
Gjergji Kasneci
    OOD
    CML
ArXivPDFHTML

Papers citing "Learning Model-Agnostic Counterfactual Explanations for Tabular Data"

32 / 32 papers shown
Title
From Search To Sampling: Generative Models For Robust Algorithmic Recourse
From Search To Sampling: Generative Models For Robust Algorithmic Recourse
Prateek Garg
Lokesh Nagalapatti
Sunita Sarawagi
16
0
0
12 May 2025
Graph Counterfactual Explainable AI via Latent Space Traversal
Graph Counterfactual Explainable AI via Latent Space Traversal
Andreas Abildtrup Hansen
Paraskevas Pegios
Anna Calissano
Aasa Feragen
OOD
BDL
AAML
76
0
0
15 Jan 2025
HR-Bandit: Human-AI Collaborated Linear Recourse Bandit
HR-Bandit: Human-AI Collaborated Linear Recourse Bandit
Junyu Cao
Ruijiang Gao
Esmaeil Keyvanshokooh
32
1
0
18 Oct 2024
Enhancing Counterfactual Image Generation Using Mahalanobis Distance
  with Distribution Preferences in Feature Space
Enhancing Counterfactual Image Generation Using Mahalanobis Distance with Distribution Preferences in Feature Space
Yukai Zhang
Ao Xu
Zihao Li
Tieru Wu
35
1
0
31 May 2024
Federated Behavioural Planes: Explaining the Evolution of Client
  Behaviour in Federated Learning
Federated Behavioural Planes: Explaining the Evolution of Client Behaviour in Federated Learning
Dario Fenoglio
Gabriele Dominici
Pietro Barbiero
Alberto Tonda
M. Gjoreski
Marc Langheinrich
FedML
29
0
0
24 May 2024
CountARFactuals -- Generating plausible model-agnostic counterfactual
  explanations with adversarial random forests
CountARFactuals -- Generating plausible model-agnostic counterfactual explanations with adversarial random forests
Susanne Dandl
Kristin Blesch
Timo Freiesleben
Gunnar Konig
Jan Kapar
B. Bischl
Marvin N. Wright
AAML
32
5
0
04 Apr 2024
Generating Likely Counterfactuals Using Sum-Product Networks
Generating Likely Counterfactuals Using Sum-Product Networks
Jiri Nemecek
Tomás Pevný
Jakub Marecek
TPM
65
0
0
25 Jan 2024
Distributional Counterfactual Explanations With Optimal Transport
Distributional Counterfactual Explanations With Optimal Transport
Lei You
Lele Cao
Mattias Nilsson
Bo Zhao
Lei Lei
OT
OffRL
20
1
0
23 Jan 2024
The future of human-centric eXplainable Artificial Intelligence (XAI) is
  not post-hoc explanations
The future of human-centric eXplainable Artificial Intelligence (XAI) is not post-hoc explanations
Vinitra Swamy
Jibril Frej
Tanja Kaser
19
13
0
01 Jul 2023
Navigating Explanatory Multiverse Through Counterfactual Path Geometry
Navigating Explanatory Multiverse Through Counterfactual Path Geometry
Kacper Sokol
E. Small
Yueqing Xuan
30
5
0
05 Jun 2023
Algorithmic Recourse with Missing Values
Algorithmic Recourse with Missing Values
Kentaro Kanamori
Takuya Takagi
Ken Kobayashi
Yuichi Ike
21
2
0
28 Apr 2023
Generating robust counterfactual explanations
Generating robust counterfactual explanations
Victor Guyomard
Franccoise Fessant
Thomas Guyet
Tassadit Bouadi
Alexandre Termier
26
10
0
24 Apr 2023
Understanding User Preferences in Explainable Artificial Intelligence: A
  Survey and a Mapping Function Proposal
Understanding User Preferences in Explainable Artificial Intelligence: A Survey and a Mapping Function Proposal
M. Hashemi
Ali Darejeh
Francisco Cruz
24
3
0
07 Feb 2023
On Root Cause Localization and Anomaly Mitigation through Causal
  Inference
On Root Cause Localization and Anomaly Mitigation through Causal Inference
Xiao Han
Lu Zhang
Yongkai Wu
Shuhan Yuan
18
7
0
08 Dec 2022
Towards Explaining Distribution Shifts
Towards Explaining Distribution Shifts
Sean Kulinski
David I. Inouye
OffRL
FAtt
20
23
0
19 Oct 2022
CLEAR: Generative Counterfactual Explanations on Graphs
CLEAR: Generative Counterfactual Explanations on Graphs
Jing Ma
Ruocheng Guo
Saumitra Mishra
Aidong Zhang
Jundong Li
CML
OOD
12
52
0
16 Oct 2022
Language Models are Realistic Tabular Data Generators
Language Models are Realistic Tabular Data Generators
V. Borisov
Kathrin Seßler
Tobias Leemann
Martin Pawelczyk
Gjergji Kasneci
LMTD
22
221
0
12 Oct 2022
Local and Regional Counterfactual Rules: Summarized and Robust Recourses
Local and Regional Counterfactual Rules: Summarized and Robust Recourses
Salim I. Amoukou
Nicolas Brunel
8
0
0
29 Sep 2022
Differentially Private Counterfactuals via Functional Mechanism
Differentially Private Counterfactuals via Functional Mechanism
Fan Yang
Qizhang Feng
Kaixiong Zhou
Jiahao Chen
Xia Hu
11
8
0
04 Aug 2022
Evaluating the Explainers: Black-Box Explainable Machine Learning for
  Student Success Prediction in MOOCs
Evaluating the Explainers: Black-Box Explainable Machine Learning for Student Success Prediction in MOOCs
Vinitra Swamy
Bahar Radmehr
Natasa Krco
Mirko Marras
Tanja Kaser
FAtt
ELM
11
39
0
01 Jul 2022
Gradient-based Counterfactual Explanations using Tractable Probabilistic
  Models
Gradient-based Counterfactual Explanations using Tractable Probabilistic Models
Xiaoting Shao
Kristian Kersting
BDL
22
1
0
16 May 2022
Counterfactual Explanations via Latent Space Projection and
  Interpolation
Counterfactual Explanations via Latent Space Projection and Interpolation
Brian Barr
Matthew R. Harrington
Samuel Sharpe
Capital One
BDL
22
10
0
02 Dec 2021
On Quantitative Evaluations of Counterfactuals
On Quantitative Evaluations of Counterfactuals
Frederik Hvilshoj
Alexandros Iosifidis
Ira Assent
6
10
0
30 Oct 2021
Counterfactual Shapley Additive Explanations
Counterfactual Shapley Additive Explanations
Emanuele Albini
Jason Long
Danial Dervovic
Daniele Magazzeni
16
49
0
27 Oct 2021
Deep Neural Networks and Tabular Data: A Survey
Deep Neural Networks and Tabular Data: A Survey
V. Borisov
Tobias Leemann
Kathrin Seßler
Johannes Haug
Martin Pawelczyk
Gjergji Kasneci
LMTD
22
643
0
05 Oct 2021
Counterfactual Explanations for Arbitrary Regression Models
Counterfactual Explanations for Arbitrary Regression Models
Thomas Spooner
Danial Dervovic
Jason Long
Jon Shepard
Jiahao Chen
Daniele Magazzeni
19
26
0
29 Jun 2021
Beyond Trivial Counterfactual Explanations with Diverse Valuable
  Explanations
Beyond Trivial Counterfactual Explanations with Diverse Valuable Explanations
Pau Rodríguez López
Massimo Caccia
Alexandre Lacoste
L. Zamparo
I. Laradji
Laurent Charlin
David Vazquez
AAML
19
55
0
18 Mar 2021
Interpretable Machine Learning: Moving From Mythos to Diagnostics
Interpretable Machine Learning: Moving From Mythos to Diagnostics
Valerie Chen
Jeffrey Li
Joon Sik Kim
Gregory Plumb
Ameet Talwalkar
17
28
0
10 Mar 2021
Beyond Individualized Recourse: Interpretable and Interactive Summaries
  of Actionable Recourses
Beyond Individualized Recourse: Interpretable and Interactive Summaries of Actionable Recourses
Kaivalya Rawal
Himabindu Lakkaraju
19
11
0
15 Sep 2020
The Intriguing Relation Between Counterfactual Explanations and
  Adversarial Examples
The Intriguing Relation Between Counterfactual Explanations and Adversarial Examples
Timo Freiesleben
GAN
27
62
0
11 Sep 2020
Model extraction from counterfactual explanations
Model extraction from counterfactual explanations
Ulrich Aivodji
Alexandre Bolot
Sébastien Gambs
MIACV
MLAU
12
51
0
03 Sep 2020
Issues with post-hoc counterfactual explanations: a discussion
Issues with post-hoc counterfactual explanations: a discussion
Thibault Laugel
Marie-Jeanne Lesot
Christophe Marsala
Marcin Detyniecki
CML
99
44
0
11 Jun 2019
1