ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1910.12511
  4. Cited By
Adaptive Sampling for Stochastic Risk-Averse Learning

Adaptive Sampling for Stochastic Risk-Averse Learning

28 October 2019
Sebastian Curi
Kfir Y. Levy
Stefanie Jegelka
Andreas Krause
ArXivPDFHTML

Papers citing "Adaptive Sampling for Stochastic Risk-Averse Learning"

17 / 17 papers shown
Title
SOREL: A Stochastic Algorithm for Spectral Risks Minimization
SOREL: A Stochastic Algorithm for Spectral Risks Minimization
Yuze Ge
Rujun Jiang
33
0
0
19 Jul 2024
Robust variance-regularized risk minimization with concomitant scaling
Robust variance-regularized risk minimization with concomitant scaling
Matthew J. Holland
26
1
0
27 Jan 2023
Stochastic Optimization for Spectral Risk Measures
Stochastic Optimization for Spectral Risk Measures
Ronak R. Mehta
Vincent Roulet
Krishna Pillutla
Lang Liu
Zaïd Harchaoui
21
6
0
10 Dec 2022
A Zeroth-Order Momentum Method for Risk-Averse Online Convex Games
A Zeroth-Order Momentum Method for Risk-Averse Online Convex Games
Zifan Wang
Yi Shen
Zachary I. Bell
Scott A. Nivison
Michael M. Zavlanos
Karl H. Johansson
17
5
0
06 Sep 2022
Asymptotic Consistency for Nonconvex Risk-Averse Stochastic Optimization
  with Infinite Dimensional Decision Spaces
Asymptotic Consistency for Nonconvex Risk-Averse Stochastic Optimization with Infinite Dimensional Decision Spaces
Johannes Milz
T. Surowiec
16
4
0
29 Jul 2022
Rank-based Decomposable Losses in Machine Learning: A Survey
Rank-based Decomposable Losses in Machine Learning: A Survey
Shu Hu
Xin Wang
Siwei Lyu
26
32
0
18 Jul 2022
Flexible risk design using bi-directional dispersion
Flexible risk design using bi-directional dispersion
Matthew J. Holland
20
5
0
28 Mar 2022
A Survey of Learning Criteria Going Beyond the Usual Risk
A Survey of Learning Criteria Going Beyond the Usual Risk
Matthew J. Holland
Kazuki Tanabe
FaML
22
4
0
11 Oct 2021
Risk-Aware Learning for Scalable Voltage Optimization in Distribution
  Grids
Risk-Aware Learning for Scalable Voltage Optimization in Distribution Grids
Shanny Lin
Shaohui Liu
Hao Zhu
10
9
0
04 Oct 2021
Spectral risk-based learning using unbounded losses
Spectral risk-based learning using unbounded losses
Matthew J. Holland
El Mehdi Haress
11
10
0
11 May 2021
Off-Policy Risk Assessment in Contextual Bandits
Off-Policy Risk Assessment in Contextual Bandits
Audrey Huang
Liu Leqi
Zachary Chase Lipton
Kamyar Azizzadenesheli
OffRL
25
36
0
18 Apr 2021
Linear Bandits on Uniformly Convex Sets
Linear Bandits on Uniformly Convex Sets
Thomas Kerdreux
Christophe Roux
Alexandre d’Aspremont
S. Pokutta
10
7
0
10 Mar 2021
Coping with Label Shift via Distributionally Robust Optimisation
Coping with Label Shift via Distributionally Robust Optimisation
J. Zhang
A. Menon
Andreas Veit
Srinadh Bhojanapalli
Sanjiv Kumar
S. Sra
OOD
11
70
0
23 Oct 2020
Learning Bounds for Risk-sensitive Learning
Learning Bounds for Risk-sensitive Learning
Jaeho Lee
Sejun Park
Jinwoo Shin
9
45
0
15 Jun 2020
A Survey on Bias and Fairness in Machine Learning
A Survey on Bias and Fairness in Machine Learning
Ninareh Mehrabi
Fred Morstatter
N. Saxena
Kristina Lerman
Aram Galstyan
SyDa
FaML
305
4,203
0
23 Aug 2019
Determinantal point processes for machine learning
Determinantal point processes for machine learning
Alex Kulesza
B. Taskar
160
1,122
0
25 Jul 2012
Improving neural networks by preventing co-adaptation of feature
  detectors
Improving neural networks by preventing co-adaptation of feature detectors
Geoffrey E. Hinton
Nitish Srivastava
A. Krizhevsky
Ilya Sutskever
Ruslan Salakhutdinov
VLM
251
7,633
0
03 Jul 2012
1