ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1910.12794
  4. Cited By
Stein Variational Gradient Descent With Matrix-Valued Kernels

Stein Variational Gradient Descent With Matrix-Valued Kernels

28 October 2019
Dilin Wang
Ziyang Tang
Chandrajit L. Bajaj
Qiang Liu
ArXivPDFHTML

Papers citing "Stein Variational Gradient Descent With Matrix-Valued Kernels"

22 / 22 papers shown
Title
Taming High-Dimensional Dynamics: Learning Optimal Projections onto Spectral Submanifolds
Taming High-Dimensional Dynamics: Learning Optimal Projections onto Spectral Submanifolds
Hugo Buurmeijer
Luis A. Pabon
J. I. Alora
Roshan S. Kaundinya
George Haller
Marco Pavone
31
0
0
04 Apr 2025
ELBOing Stein: Variational Bayes with Stein Mixture Inference
ELBOing Stein: Variational Bayes with Stein Mixture Inference
Ola Rønning
Eric T. Nalisnick
Christophe Ley
Padhraic Smyth
Thomas Hamelryck
BDL
50
1
0
30 Oct 2024
Stein Variational Evolution Strategies
Stein Variational Evolution Strategies
Cornelius V. Braun
Robert T. Lange
Marc Toussaint
26
0
0
14 Oct 2024
Electrostatics-based particle sampling and approximate inference
Electrostatics-based particle sampling and approximate inference
Yongchao Huang
DiffM
29
2
0
28 Jun 2024
Stein Random Feature Regression
Stein Random Feature Regression
Houston Warren
Rafael Oliveira
Fabio Ramos
BDL
36
0
0
01 Jun 2024
Uncertainty Quantification of Graph Convolution Neural Network Models of
  Evolving Processes
Uncertainty Quantification of Graph Convolution Neural Network Models of Evolving Processes
J. Hauth
C. Safta
Xun Huan
Ravi G. Patel
Reese E. Jones
BDL
UQCV
25
2
0
17 Feb 2024
Convergence and stability results for the particle system in the Stein
  gradient descent method
Convergence and stability results for the particle system in the Stein gradient descent method
José A. Carrillo
Jakub Skrzeczkowski
17
2
0
26 Dec 2023
Noise-Free Sampling Algorithms via Regularized Wasserstein Proximals
Noise-Free Sampling Algorithms via Regularized Wasserstein Proximals
Hongwei Tan
Stanley Osher
Wuchen Li
24
7
0
28 Aug 2023
Constrained Stein Variational Trajectory Optimization
Constrained Stein Variational Trajectory Optimization
Thomas Power
Dmitry Berenson
28
12
0
23 Aug 2023
Further analysis of multilevel Stein variational gradient descent with
  an application to the Bayesian inference of glacier ice models
Further analysis of multilevel Stein variational gradient descent with an application to the Bayesian inference of glacier ice models
Terrence Alsup
Tucker Hartland
Benjamin Peherstorfer
N. Petra
11
1
0
06 Dec 2022
Particle-based Variational Inference with Preconditioned Functional
  Gradient Flow
Particle-based Variational Inference with Preconditioned Functional Gradient Flow
Hanze Dong
Xi Wang
Yong Lin
Tong Zhang
22
19
0
25 Nov 2022
Convergence of Stein Variational Gradient Descent under a Weaker
  Smoothness Condition
Convergence of Stein Variational Gradient Descent under a Weaker Smoothness Condition
Lukang Sun
Avetik G. Karagulyan
Peter Richtárik
21
19
0
01 Jun 2022
Stein Variational Probabilistic Roadmaps
Stein Variational Probabilistic Roadmaps
Alexander Lambert
Brian Hou
Rosario Scalise
S. Srinivasa
Byron Boots
11
8
0
04 Nov 2021
Stein Variational Gradient Descent with Multiple Kernel
Stein Variational Gradient Descent with Multiple Kernel
Qingzhong Ai
Shiyu Liu
Lirong He
Zenglin Xu
11
4
0
20 Jul 2021
Entropy Regularized Motion Planning via Stein Variational Inference
Entropy Regularized Motion Planning via Stein Variational Inference
Alexander Lambert
Byron Boots
37
12
0
11 Jul 2021
Sampling with Mirrored Stein Operators
Sampling with Mirrored Stein Operators
Jiaxin Shi
Chang-rui Liu
Lester W. Mackey
39
19
0
23 Jun 2021
Stein's Method Meets Computational Statistics: A Review of Some Recent
  Developments
Stein's Method Meets Computational Statistics: A Review of Some Recent Developments
Andreas Anastasiou
Alessandro Barp
F. Briol
B. Ebner
Robert E. Gaunt
...
Qiang Liu
Lester W. Mackey
Chris J. Oates
G. Reinert
Yvik Swan
22
35
0
07 May 2021
Robust Generalised Bayesian Inference for Intractable Likelihoods
Robust Generalised Bayesian Inference for Intractable Likelihoods
Takuo Matsubara
Jeremias Knoblauch
François‐Xavier Briol
Chris J. Oates
UQCV
19
74
0
15 Apr 2021
SVGD as a kernelized Wasserstein gradient flow of the chi-squared
  divergence
SVGD as a kernelized Wasserstein gradient flow of the chi-squared divergence
Sinho Chewi
Thibaut Le Gouic
Chen Lu
Tyler Maunu
Philippe Rigollet
18
66
0
03 Jun 2020
Bayesian Model-Agnostic Meta-Learning
Bayesian Model-Agnostic Meta-Learning
Taesup Kim
Jaesik Yoon
Ousmane Amadou Dia
Sungwoong Kim
Yoshua Bengio
Sungjin Ahn
UQCV
BDL
191
498
0
11 Jun 2018
A Stein variational Newton method
A Stein variational Newton method
Gianluca Detommaso
Tiangang Cui
Alessio Spantini
Youssef Marzouk
Robert Scheichl
61
114
0
08 Jun 2018
MCMC using Hamiltonian dynamics
MCMC using Hamiltonian dynamics
Radford M. Neal
182
3,262
0
09 Jun 2012
1