Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1911.00294
Cited By
A Unified Stochastic Gradient Approach to Designing Bayesian-Optimal Experiments
1 November 2019
Adam Foster
M. Jankowiak
M. O'Meara
Yee Whye Teh
Tom Rainforth
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A Unified Stochastic Gradient Approach to Designing Bayesian-Optimal Experiments"
17 / 17 papers shown
Title
Amortized Bayesian Experimental Design for Decision-Making
Daolang Huang
Yujia Guo
Luigi Acerbi
Samuel Kaski
48
2
0
03 Jan 2025
Deep Optimal Sensor Placement for Black Box Stochastic Simulations
Paula Cordero-Encinar
Tobias Schröder
P. Yatsyshin
Andrew Duncan
50
0
0
15 Oct 2024
Bayesian Experimental Design via Contrastive Diffusions
Jacopo Iollo
Christophe Heinkelé
Pierre Alliez
Florence Forbes
30
0
0
15 Oct 2024
Variational Bayesian Optimal Experimental Design with Normalizing Flows
Jiayuan Dong
Christian L. Jacobsen
Mehdi Khalloufi
Maryam Akram
Wanjiao Liu
Karthik Duraisamy
Xun Huan
BDL
54
5
0
08 Apr 2024
Nonlinear Bayesian optimal experimental design using logarithmic Sobolev inequalities
Fengyi Li
Ayoub Belhadji
Youssef Marzouk
30
1
0
23 Feb 2024
Modern Bayesian Experimental Design
Tom Rainforth
Adam Foster
Desi R. Ivanova
Freddie Bickford-Smith
37
77
0
28 Feb 2023
When Bioprocess Engineering Meets Machine Learning: A Survey from the Perspective of Automated Bioprocess Development
Nghia Duong-Trung
Stefan Born
Jong Woo Kim
M. Schermeyer
Katharina Paulick
...
Thorben Werner
Randolf Scholz
Lars Schmidt-Thieme
Peter Neubauer
Ernesto Martinez
34
20
0
02 Sep 2022
An Optimal Likelihood Free Method for Biological Model Selection
Vincent D. Zaballa
E. Hui
34
0
0
03 Aug 2022
Robust Expected Information Gain for Optimal Bayesian Experimental Design Using Ambiguity Sets
Jinwook Go
T. Isaac
21
10
0
20 May 2022
Statistical applications of contrastive learning
Michael U. Gutmann
Steven Kleinegesse
Benjamin Rhodes
24
7
0
29 Apr 2022
Interventions, Where and How? Experimental Design for Causal Models at Scale
P. Tigas
Yashas Annadani
Andrew Jesson
Bernhard Schölkopf
Y. Gal
Stefan Bauer
CML
36
48
0
03 Mar 2022
Implicit Deep Adaptive Design: Policy-Based Experimental Design without Likelihoods
Desi R. Ivanova
Adam Foster
Steven Kleinegesse
Michael U. Gutmann
Tom Rainforth
OffRL
21
46
0
03 Nov 2021
Decomposed Mutual Information Estimation for Contrastive Representation Learning
Alessandro Sordoni
Nouha Dziri
Hannes Schulz
Geoffrey J. Gordon
Philip Bachman
Rémi Tachet des Combes
SSL
24
29
0
25 Jun 2021
Investigating the Role of Negatives in Contrastive Representation Learning
Jordan T. Ash
Surbhi Goel
A. Krishnamurthy
Dipendra Kumar Misra
SSL
29
49
0
18 Jun 2021
Active Testing: Sample-Efficient Model Evaluation
Jannik Kossen
Sebastian Farquhar
Y. Gal
Tom Rainforth
VLM
21
48
0
09 Mar 2021
Deep Adaptive Design: Amortizing Sequential Bayesian Experimental Design
Adam Foster
Desi R. Ivanova
Ilyas Malik
Tom Rainforth
28
78
0
03 Mar 2021
Bayesian Experimental Design for Implicit Models by Mutual Information Neural Estimation
Steven Kleinegesse
Michael U. Gutmann
26
64
0
19 Feb 2020
1