ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1911.01373
  4. Cited By
Gradient-based Adaptive Markov Chain Monte Carlo

Gradient-based Adaptive Markov Chain Monte Carlo

4 November 2019
Michalis K. Titsias
P. Dellaportas
    BDL
ArXivPDFHTML

Papers citing "Gradient-based Adaptive Markov Chain Monte Carlo"

10 / 10 papers shown
Title
Score-Based Metropolis-Hastings Algorithms
Score-Based Metropolis-Hastings Algorithms
Ahmed Aloui
Ali Hasan
Juncheng Dong
Zihao Wu
Vahid Tarokh
DiffM
34
0
0
31 Dec 2024
Optimal Preconditioning and Fisher Adaptive Langevin Sampling
Optimal Preconditioning and Fisher Adaptive Langevin Sampling
Michalis K. Titsias
35
11
0
23 May 2023
Variance Reduction for Metropolis-Hastings Samplers
Variance Reduction for Metropolis-Hastings Samplers
Angelos N. Alexopoulos
P. Dellaportas
Michalis K. Titsias
11
2
0
04 Mar 2022
Path Integral Sampler: a stochastic control approach for sampling
Path Integral Sampler: a stochastic control approach for sampling
Qinsheng Zhang
Yongxin Chen
DiffM
15
101
0
30 Nov 2021
Focusing on Difficult Directions for Learning HMC Trajectory Lengths
Focusing on Difficult Directions for Learning HMC Trajectory Lengths
Pavel Sountsov
Matt Hoffman
24
9
0
22 Oct 2021
Semi-Empirical Objective Functions for MCMC Proposal Optimization
Semi-Empirical Objective Functions for MCMC Proposal Optimization
Chris Cannella
Vahid Tarokh
28
1
0
03 Jun 2021
Sampling by Divergence Minimization
Sampling by Divergence Minimization
Ameer Dharamshi
V. Ngo
Jeffrey S. Rosenthal
21
4
0
02 May 2021
Deep Generative Modelling: A Comparative Review of VAEs, GANs,
  Normalizing Flows, Energy-Based and Autoregressive Models
Deep Generative Modelling: A Comparative Review of VAEs, GANs, Normalizing Flows, Energy-Based and Autoregressive Models
Sam Bond-Taylor
Adam Leach
Yang Long
Chris G. Willcocks
VLM
TPM
36
478
0
08 Mar 2021
A Neural Network MCMC sampler that maximizes Proposal Entropy
A Neural Network MCMC sampler that maximizes Proposal Entropy
Zengyi Li
Yubei Chen
Friedrich T. Sommer
25
14
0
07 Oct 2020
MCMC using Hamiltonian dynamics
MCMC using Hamiltonian dynamics
Radford M. Neal
185
3,262
0
09 Jun 2012
1