ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1911.05020
  4. Cited By
Generative adversarial networks (GAN) based efficient sampling of
  chemical space for inverse design of inorganic materials

Generative adversarial networks (GAN) based efficient sampling of chemical space for inverse design of inorganic materials

12 November 2019
Yabo Dan
Yong Zhao
Xiang Li
Shaobo Li
Ming Hu
Jianjun Hu
    AI4CE
    GAN
ArXivPDFHTML

Papers citing "Generative adversarial networks (GAN) based efficient sampling of chemical space for inverse design of inorganic materials"

4 / 4 papers shown
Title
Enhancing Vision-Language Compositional Understanding with Multimodal Synthetic Data
Enhancing Vision-Language Compositional Understanding with Multimodal Synthetic Data
Haoxin Li
Boyang Li
CoGe
62
0
0
03 Mar 2025
End-to-End Crystal Structure Prediction from Powder X-Ray Diffraction
End-to-End Crystal Structure Prediction from Powder X-Ray Diffraction
Qingsi Lai
Lin Yao
Zhifeng Gao
Siyuan Liu
Hongshuai Wang
...
Di He
Liwei Wang
Cheng Wang
Guolin Ke
Guolin Ke
15
7
0
08 Jan 2024
Scalable Diffusion for Materials Generation
Scalable Diffusion for Materials Generation
Mengjiao Yang
KwangHwan Cho
Amil Merchant
Pieter Abbeel
Dale Schuurmans
Igor Mordatch
E. D. Cubuk
19
38
0
18 Oct 2023
Conditional molecular design with deep generative models
Conditional molecular design with deep generative models
Seokho Kang
Kyunghyun Cho
BDL
138
182
0
30 Apr 2018
1