ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1911.05369
  4. Cited By
Fair Adversarial Gradient Tree Boosting

Fair Adversarial Gradient Tree Boosting

13 November 2019
Vincent Grari
Boris Ruf
Sylvain Lamprier
Marcin Detyniecki
    FaML
ArXivPDFHTML

Papers citing "Fair Adversarial Gradient Tree Boosting"

19 / 19 papers shown
Title
General Post-Processing Framework for Fairness Adjustment of Machine Learning Models
General Post-Processing Framework for Fairness Adjustment of Machine Learning Models
Léandre Eberhard
Nirek Sharma
Filipp Shelobolin
Aalok Ganesh Shanbhag
FaML
43
0
0
22 Apr 2025
M$^2$FGB: A Min-Max Gradient Boosting Framework for Subgroup Fairness
M2^22FGB: A Min-Max Gradient Boosting Framework for Subgroup Fairness
Jansen S. B. Pereira
Giovani Valdrighi
Marcos Medeiros Raimundo
FaML
39
0
0
16 Apr 2025
Best Practices for Responsible Machine Learning in Credit Scoring
Best Practices for Responsible Machine Learning in Credit Scoring
Giovani Valdrighi
Athyrson M. Ribeiro
Jansen S. B. Pereira
Vitoria Guardieiro
Arthur Hendricks
...
Juan David Nieto Garcia
Felipe F. Bocca
Thalita B. Veronese
Lucas Wanner
Marcos Medeiros Raimundo
FaML
23
0
0
30 Sep 2024
Enhancing Fairness and Performance in Machine Learning Models: A
  Multi-Task Learning Approach with Monte-Carlo Dropout and Pareto Optimality
Enhancing Fairness and Performance in Machine Learning Models: A Multi-Task Learning Approach with Monte-Carlo Dropout and Pareto Optimality
Khadija Zanna
Akane Sano
FaML
41
1
0
12 Apr 2024
Fair MP-BOOST: Fair and Interpretable Minipatch Boosting
Fair MP-BOOST: Fair and Interpretable Minipatch Boosting
Camille Olivia Little
Genevera I. Allen
25
0
0
01 Apr 2024
On the Fairness ROAD: Robust Optimization for Adversarial Debiasing
On the Fairness ROAD: Robust Optimization for Adversarial Debiasing
Vincent Grari
Thibault Laugel
Tatsunori Hashimoto
Sylvain Lamprier
Marcin Detyniecki
33
2
0
27 Oct 2023
Fair Feature Importance Scores for Interpreting Tree-Based Methods and
  Surrogates
Fair Feature Importance Scores for Interpreting Tree-Based Methods and Surrogates
Camille Olivia Little
Debolina Halder Lina
Genevera I. Allen
18
1
0
06 Oct 2023
Bias Mitigation Methods for Binary Classification Decision-Making
  Systems: Survey and Recommendations
Bias Mitigation Methods for Binary Classification Decision-Making Systems: Survey and Recommendations
Madeleine Waller
Odinaldo Rodrigues
O. Cocarascu
FaML
AI4CE
30
2
0
31 May 2023
FairGBM: Gradient Boosting with Fairness Constraints
FairGBM: Gradient Boosting with Fairness Constraints
André F. Cruz
Catarina Belém
Sérgio Jesus
Joao Bravo
Pedro Saleiro
P. Bizarro
21
22
0
16 Sep 2022
Bias Mitigation for Machine Learning Classifiers: A Comprehensive Survey
Bias Mitigation for Machine Learning Classifiers: A Comprehensive Survey
Max Hort
Zhenpeng Chen
Jie M. Zhang
Mark Harman
Federica Sarro
FaML
AI4CE
31
159
0
14 Jul 2022
To the Fairness Frontier and Beyond: Identifying, Quantifying, and
  Optimizing the Fairness-Accuracy Pareto Frontier
To the Fairness Frontier and Beyond: Identifying, Quantifying, and Optimizing the Fairness-Accuracy Pareto Frontier
Camille Olivia Little
Michael Weylandt
Genevera I. Allen
22
13
0
31 May 2022
Bias and unfairness in machine learning models: a systematic literature
  review
Bias and unfairness in machine learning models: a systematic literature review
T. P. Pagano
R. B. Loureiro
F. V. N. Lisboa
G. O. R. Cruz
R. M. Peixoto
...
Maira M. Araujo
Marco A. S. Cruz
Ewerton L. S. Oliveira
Ingrid Winkler
E. G. S. Nascimento
FaML
20
21
0
16 Feb 2022
Learning Optimal Fair Classification Trees: Trade-offs Between
  Interpretability, Fairness, and Accuracy
Learning Optimal Fair Classification Trees: Trade-offs Between Interpretability, Fairness, and Accuracy
Nathanael Jo
S. Aghaei
A. Gómez
P. Vayanos
FaML
27
12
0
24 Jan 2022
Fair Enough: Searching for Sufficient Measures of Fairness
Fair Enough: Searching for Sufficient Measures of Fairness
Suvodeep Majumder
Joymallya Chakraborty
Gina R. Bai
Kathryn T. Stolee
Tim Menzies
11
26
0
25 Oct 2021
A survey on datasets for fairness-aware machine learning
A survey on datasets for fairness-aware machine learning
Tai Le Quy
Arjun Roy
Vasileios Iosifidis
Wenbin Zhang
Eirini Ntoutsi
FaML
11
240
0
01 Oct 2021
Strong Optimal Classification Trees
Strong Optimal Classification Trees
S. Aghaei
Andrés Gómez
P. Vayanos
16
41
0
29 Mar 2021
FairXGBoost: Fairness-aware Classification in XGBoost
FairXGBoost: Fairness-aware Classification in XGBoost
S. Ravichandran
Drona Khurana
B. Venkatesh
N. Edakunni
FaML
12
6
0
03 Sep 2020
Adversarial Learning for Counterfactual Fairness
Adversarial Learning for Counterfactual Fairness
Vincent Grari
Sylvain Lamprier
Marcin Detyniecki
FaML
17
22
0
30 Aug 2020
SnapBoost: A Heterogeneous Boosting Machine
SnapBoost: A Heterogeneous Boosting Machine
Thomas Parnell
Andreea Anghel
M. Lazuka
Nikolas Ioannou
Sebastian Kurella
Peshal Agarwal
N. Papandreou
Haralambos Pozidis
14
0
0
17 Jun 2020
1